1.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
2.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
3.Analysis of Thalassemia Gene Variants in the Wuhan Region.
Xiao-Fan CHEN ; Yong-Fen XIONG ; Bin-Tao SU ; Jing YU ; Han LI ; Shun WANG
Journal of Experimental Hematology 2025;33(5):1398-1404
OBJECTIVE:
To analyze the distribution of thalassemia (referred to as "thalassemia") gene variant types in the population of the Wuhan area, aiming to provide a genetic basis for the precise prevention and control as well as clinical diagnosis of thalassemia in the Wuhan region.
METHODS:
In this study, 2 133 suspected thalassemia patients and individuals undergoing prenatal screening who visited the Department of Hematology, Obstetrics and Gynecology, Reproductive Medicine, Pediatrics, and Neurology at Wuhan First Hospital from October 2022 to October 2024 were selected as the research subjects. Peripheral blood samples were collected from the patients. The common 27 thalassemia genotypes of α- and β-thalassemia were initially screened using fluorescence PCR melting curve analysis technology. For samples where the fluorescence PCR melting curve results indicated unknown variants or where the clinical phenotype was inconsistent with the common genotypes, Sanger sequencing technology was used for review and verification.
RESULTS:
Among the 2 133 specimens analyzed, common thalassemia gene variants were detected in 210 cases (9.85%, 210/2 133). A total of 156 cases (8.05%, 156/1 938) of thalassemia gene variants were detected in females and 54 cases (27.69%, 54/195) in males. A total of 94 cases (4.41%, 94/2 133) of α-thalassemia were detected, including 46 cases (2.16%, 46/2 133) of silent α-thalassemia, 47 cases (2.20%, 47/2 133) of mild α-thalassemia, and 1 case (0.05%, 1/2 133) of intermediate α-thalassemia. Additionally, 111 cases of β-thalassemia were identified (5.20%, 111/2 133), including 51 cases of β/β+ thalassemia (2.39%, 51/2 133), 59 cases of β/β0 thalassemia (2.77%, 59/2 133), and 1 case of β+/HbE thalassemia (0.05%, 1/2 133). αβ-composite thalassemia gene variants were detected in 5 cases (0.23%, 5/2 133), including 1 complex variant with a genotype of --SEA/αα combined with CD41-42 (-TTCT) and 29(A>G), representing a heterozygous variant of three genotypes. Rare globin gene variants were detected in 3 cases, including HBB:c.60C>T, HBB:c.-146G>T, and HBA2:c.*12G>A.
CONCLUSION
The Wuhan region exhibits a relatively high prevalence of thalassemia genes with notable gender disparities. While maintaining focus on thalassemia screening for females, enhanced males screening efforts and genetic counseling should be implemented in future prevention programs.
Humans
;
Female
;
Male
;
Genotype
;
beta-Thalassemia/genetics*
;
China
;
Thalassemia/genetics*
;
alpha-Thalassemia/genetics*
;
Genetic Variation
4.Genetic diversity and molecular identity of Prunus mume with both ornamental and edible values based on fluorescence-labeled simple sequence repeat (SSR) markers.
Zixu WANG ; Dan ZHOU ; Yanbei ZHAO ; Yuhang TONG ; Weijun ZHENG ; Qingwei LI
Chinese Journal of Biotechnology 2025;41(2):639-656
We studied the genetic diversity and established the DNA molecular identify for Prunus mume with both ornamental and edible values, aiming to collect, identify, evaluate, and breed new varities of this plant and promote the upgrading of the P. mume industry chain in northern China. We employed 13 pairs of primers with good polymorphism, clear bands, and good repeatability to analyze the genetic diversity and establish the molecular identify of 68 germplasm accessions of P. mume with both ornamental and edible values from Xingtai, Hebei Province. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance. After that, we analyzed the genetic structure of the 68 germplasm accessions based on a Bayesian model. The 13 pairs of SSR primers amplified a total of 124 alleles from 68 P. mume germplasm accessions, with the mean number of alleles (Na) of 9.538 5, the minor allele frequency (MAF) of 0.369 3, the mean number of effective alleles (Ne) of 4.483 5, and the mean Shannon genetic diversity index (I) of 1.712 4. The mean Nei's gene diversity index (H) of 0.763 7, the mean observed heterozygosity (Ho) of 0.719 5, the mean expected heterozygosity (He) of 0.769 3, the mean polymorphism information content (PIC) of 0.733 6, and the mean genetic similarity (GS) of 0.772 9 suggested that there were significant genetic differences and rich genetic diversity among the studied P. mume germplasm accessions. The cluster analysis revealed that the 68 accessions were classified into three groups, with the mean genetic distance of 0.622 6. The population structure analysis classified the germplasm accessions into two populations. According to the PIC of primers, we selected primers for combination and constructed the combination with the fewest primers required for germplasm differentiation of P. mume with both ornamental and edible values. This study provides a theoretical basis for the innovation and industrial upgrading of P. mume with both ornamental and edible values in gardening and the improvement of breeding efficiency.
Prunus/classification*
;
Microsatellite Repeats/genetics*
;
Genetic Variation
;
China
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Alleles
5.Genetic diversity analysis and fingerprinting of 175 Chimonanthus praecox germplasm based on SSR molecular marker.
Xiujun WANG ; Yanbei ZHAO ; Jing WANG ; Zihang LI ; Jitang ZHANG ; Qingwei LI
Chinese Journal of Biotechnology 2024;40(1):252-268
The elucidation of resources pertaining to the Chimonanthus praecox varieties and the establishment of a fingerprint serve as crucial underpinnings for advancing scientific inquiry and industrial progress in relation to C. praecox. Employing the SSR molecular marker technology, an exploration of the genetic diversity of 175 C. praecox varieties (lines) in the Yanling region was conducted, and an analysis of the genetic diversity among these varieties was carried out using the UPDM clustering method in NTSYSpc 2.1 software. We analyzed the genetic structure of 175 germplasm using Structure v2.3.3 software based on a Bayesian model. General linear model (GLM) association was utilized to analyze traits and markers. The genetic diversity analysis revealed a mean number of alleles (Na) of 6.857, a mean expected heterozygosity (He) of 0.496 3, a mean observed heterozygosity (Ho) of 0.503 7, a mean genetic diversity index of Nei՚s of 0.494 9, and a mean Shannon information index of 0.995 8. These results suggest that the C. praecox population in Yanling exhibits a rich genetic diversity. Additionally, the population structure and the UPDM clustering were examined. In the GLM model, a total of fifteen marker loci exhibited significant (P < 0.05) association with eight phenotypic traits, with the explained phenotypic variation ranging from 14.90% to 36.03%. The construction of fingerprints for C. praecox varieties (lines) was accomplished by utilizing eleven primer pairs with the highest polymorphic information content, resulting in the analysis of 175 SSR markers. The present study offers a thorough examination of the genetic diversity and SSR molecular markers of C. praecox in Yanling, and establishes a fundamental germplasm repository of C. praecox, thereby furnishing theoretical underpinnings for the selection and cultivation of novel and superior C. praecox varieties, varietal identification, and resource preservation and exploitation.
Bayes Theorem
;
Biomarkers
;
Phenotype
;
Cluster Analysis
;
Genetic Variation
6.Development of DNA molecular identity cards for germplasm of Murraya paniculata based on SSR markers.
Cheng SUN ; Bo-Cheng WANG ; Zi-Yuan CHEN ; Chao JIANG ; Wen-Bo XIE ; Yuan YUAN
China Journal of Chinese Materia Medica 2024;49(23):6272-6280
To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M. paniculata based on 9 SSR markers identified from the M. paniculata genome, and the molecular weights and alleles of the amplified bands were analyzed. According to the banding patterns of the 9 SSR primers, this study analyzed the genetic diversity of each germplasm accession of M. paniculata and developed molecular ID cards for the test samples. The results showed that 9 pairs of SSR primers detected 78 alleles, with an average of 8.67 alleles. The observed and expected heterozygosity was 0.338-0.831(average of 0.601) and 0.413-0.853(average of 0.721), respectively. The Shannon's information index varied within the range of 0.880-1.994, with an average of 1.41. The polymorphic information content was within the range of 0.391-0.835, with an average of 0.696, which indicated rich genetic diversity. When the genetic identity was 0.347, the 65 germplasm accessions were classified into 5 groups. Based on the results, this study employed the 5 SSR primers with higher polymorphisms to develop the molecular ID cards for the germplasm resources of M. paniculata and created QR code ID cards for the 49 core germplasm accessions preserved in the Yunfu germplasm nursery, laying a foundation for the new variety breeding, production, utilization, and traceability of M. paniculata.
Microsatellite Repeats
;
DNA, Plant/genetics*
;
Murraya/classification*
;
Genetic Variation
;
Alleles
;
Polymerase Chain Reaction
;
Polymorphism, Genetic
7.Construction of black-bone silky fowl (Gallus gallus domesticus) families based on genetic diversity.
Jiao LIU ; Hai-Yun GAO ; Yuan YUAN ; Tian-Rui LIU ; Hui LI ; Tian ZHANG
China Journal of Chinese Materia Medica 2024;49(23):6281-6290
Black-bone silky fowls(Gallus gallus domesticus) have a long history of medicinal use, with the origin in Taihe county, Jiangxi province. The unclear family composition, inbreeding rate, and effective population size were inconducive to the resource conservation or breed improvement of black-bone silky fowls. A genome-wide analysis was performed to evaluate the genetic diversity of 80 black-bone silky fowls from random mating in three farms in 2021 in terms of minor allele frequency(MAF), expected heterozygosity(H_e), observed heterozygosity(H_o), effective population size(N_e), and runs of homozygosity(ROH). The results showed that a total of 9 641 411 SNPs were passed quality control from 80 black-bone silky fowls. The polymorphic marker ratio, expected heterozygosity, and observed heterozygosity in this population were 0.81, 0.34, and 0.33, respectively, and the average IBS genetic distance of black-bone silky fowls was 0.38±0.008 2. A total of 15 969 ROHs were identified, with the average length of 0.73 Mb, and most of the ROHs were 0~2 Mb. According to inbreeding ROHs, the average inbreeding coefficient was 0.150 9. The high-frequency ROH regions harbored 424 genes, including two genes, SLC13A4 and DDX6, associated with pigmentation. The results showed that the genetic relationship between individuals of black-bone silky fowls was far. The population had experienced a strong decline in size in recent decades, and the inbreeding degree was high. According to the results, an appropriate family construction scheme was proposed for resource conservation and breeding work of black-bone silky fowls.
Animals
;
Chickens/genetics*
;
Genetic Variation
;
Polymorphism, Single Nucleotide
;
Breeding
;
Gene Frequency
;
Male
;
Female
8.High Diversity in Genotypes of Human Rhinovirus Contributes to High Prevalence in Beijing, 2018-2022: A Retrospective Multiple-Center Epidemiological Study.
Qing WANG ; Qi HUANG ; Qin LUO ; Xiaofeng WEI ; Xue WANG ; Maozhong LI ; Cheng GONG ; Fang HUANG
Biomedical and Environmental Sciences 2024;37(11):1262-1272
OBJECTIVE:
To comprehensively examine the molecular epidemiological characteristics of human rhinovirus (HRV) in Beijing.
METHODS:
A total of 7,151 children and adults with acute respiratory tract infections (ARTIs) were recruited from 35 sentinel hospitals in Beijing between 2018 and 2022. Their respiratory samples were obtained, and epidemiological and clinical data were collected. Nucleic acid testing for 11 respiratory pathogens, including HRV, was performed on the specimens. We sequenced VP4/VP2 or 5'UTR of HRV isolates to identify their genotypes using phylogenetic analyses.
RESULTS:
HRV was detected in 462 (6.5%) cases. A total of 105 HRV genotypes were successfully identified in 359 (77.7%) specimens, comprising 247 (68.8%) with HRV-A, 42 (11.7%) with HRV-B, and 70 (19.5%) with HRV-C. No predominant genotype was observed. HRV was prevalent year-round with two weak peaks in spring and autumn. HRV detection declined gradually between 2018 and 2022, with seven genotypes disappearing and five genotypes emerging. HRV detection rate decreased by age without resurge among old people. HRV-C was more common among children aged less than 5 years with severe community-acquired pneumonia compared to HRV-A and HRV-B. Adults infected with HRV-B had higher rates of hospitalization, intensive care unit admission, and complications than those infected with HRV-A and HRV-C.
CONCLUSION
HRV epidemics in Beijing were highly dispersed in genotypes, which probably resulted in a high prevalence of HRV infection, attenuated its seasonality, and made it more difficult to establish effective population immunity.
Humans
;
Rhinovirus/classification*
;
Beijing/epidemiology*
;
Child
;
Child, Preschool
;
Adult
;
Genotype
;
Male
;
Adolescent
;
Picornaviridae Infections/virology*
;
Female
;
Middle Aged
;
Infant
;
Retrospective Studies
;
Young Adult
;
Prevalence
;
Aged
;
Respiratory Tract Infections/epidemiology*
;
Phylogeny
;
Genetic Variation
9.Genetic diversity and structure of 15 full-sib families of Litopenaeus vannamei based on SSR markers.
Wenchun CHEN ; Kai PENG ; Minwei HUANG ; Jichen ZHAO ; Zhihao ZHANG ; Hui GUO ; Jinshang LIU ; Zhenxing LIU ; Huijie LU ; Wen HUANG
Chinese Journal of Biotechnology 2024;40(12):4628-4644
To clarify the genetic diversity and structure of the nucleus population of F1-generation Litopenaeus vannamei, this study utilized 15 pairs of highly polymorphic microsatellite primers to analyze the simple sequence repeat (SSR) markers and genetic diversity in 15 full-sib families of L. vannamei. A total of 112 alleles (Na) and 60.453 effective alleles (Ne) were identified among the selected 15 SSR loci, with the average polymorphic information content (PIC) of 0.648. The average Ne, observed heterozygosity (Ho), and expected heterozygosity (He) in the 15 F1 families varied from 1.925 to 2.626, 0.425 to 0.783, and 0.403 to 0.572, respectively. The 15 full-sib families were primarily clustered into three categories in the phylogenetic analysis, with the genetic distance between families ranging from 0.252 to 0.574. Additionally, the genetic differentiation coefficient (Fst) among the families varied from 0.112 to 0.278, indicating substantial genetic differentiation. Overall, this study suggested that the genetic diversity of the 15 full-sib families was moderate, providing valuable genetic insights for the subsequent breeding initiatives aimed at enhancing the tolerance of L. vannamei to high levels of soybean meal.
Penaeidae/classification*
;
Microsatellite Repeats/genetics*
;
Animals
;
Genetic Variation
;
Polymorphism, Genetic
;
Phylogeny
;
Alleles
;
Genetic Markers
10.Associations of genetic variations in pyroptosis related genes with acute adverse events in postoperative rectal cancer patients receiving concurrent chemoradiotherapy.
Hong Xia CHEN ; Ning Xin REN ; Jie YANG ; Jin Na CHEN ; Qi Xuan LU ; Yan Ru FENG ; Ying HUANG ; Lu Qian YIN ; Dong Xi LIN ; Ye Xiong LI ; Jing JIN ; Wen TAN
Chinese Journal of Oncology 2023;45(2):146-152
Objective: This study aims to investigate the associations between genetic variations of pyroptosis pathway related key genes and adverse events (AEs) of postoperative chemoradiotherapy (CRT) in patients with rectal cancer. Methods: DNA was extracted from the peripheral blood which was collected from 347 patients before CRT. Sequenom MassARRAY was used to detect the genotypes of 43 haplotype-tagging single nucleotide polymorphisms (htSNPs) in eight pyroptosis genes, including absent in melanoma 2 (AIM2), caspase-1 (CASP1), caspase-4(CASP4), caspase-5 (CASP5), caspase-11 (CASP11), gasdermin D (GSDMD), gasdermin E (GSDME) and NLR family pyrin domain containing 3 (NLRP3). The associations between 43 htSNPs and AEs were evaluated by the odd ratios (ORs) and 95% confidence intervals (CIs) by unconditional logistic regression models, adjusted for sex, age, clinical stage, tumor grade, Karnofsky performance status (KPS), surgical procedure, and tumor location. Results: Among the 347 patients with rectal cancer underwent concurrent CRT with capecitabine after surgery, a total of 101(29.1%) occurred grade ≥ 2 leukopenia. rs11226565 (OR=0.41, 95% CI: 0.21-0.79, P=0.008), rs579408(OR=1.54, 95% CI: 1.03-2.29, P=0.034) and rs543923 (OR=0.63, 95% CI: 0.41-0.98, P=0.040) were significantly associated with the occurrence of grade ≥ 2 leukopenia. One hundred and fifty-six (45.0%) had grade ≥ 2 diarrhea, two SNPs were significantly associated with the occurrence of grade ≥ diarrhea, including CASP11 rs10880868 (OR=0.55, 95% CI: 0.33-0.91, P=0.020) and GSDME rs2954558 (OR=1.52, 95% CI: 1.01-2.31, P=0.050). In addition, sixty-six cases (19.0%) developed grade ≥2 dermatitis, three SNPs that significantly associated with the risk of grade ≥2 dermatitis included GSDME rs2237314 (OR=0.36, 95% CI: 0.16-0.83, P=0.017), GSDME rs12540919 (OR=0.52, 95% CI: 0.27-0.99, P=0.045) and NLRP3 rs3806268 (OR=1.51, 95% CI: 1.03-2.22, P=0.037). There was no significant difference in the association between other genetic variations and AEs of rectal cancer patients (all P>0.05). Surgical procedure and tumor location had great impacts on the occurrence of grade ≥2 diarrhea and dermatitis (all P<0.01). Conclusion: The genetic variants of CASP4, CASP11, GSDME and NLRP3 are associated with the occurrence of AEs in patients with rectal cancer who received postoperative CRT, suggesting they may be potential genetic markers in predicting the grade of AEs to achieve individualized treatment of rectal cancer.
Humans
;
Pyroptosis
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Gasdermins
;
Chemoradiotherapy/adverse effects*
;
Rectal Neoplasms/surgery*
;
Caspases/metabolism*
;
Diarrhea/chemically induced*
;
Leukopenia/genetics*
;
Genetic Variation
;
Dermatitis

Result Analysis
Print
Save
E-mail