1.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
2.Advances in gene and cellular therapeutic approaches for Huntington's disease.
Xuejiao PIAO ; Dan LI ; Hui LIU ; Qing GUO ; Yang YU
Protein & Cell 2025;16(5):307-337
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and nonpharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Huntington Disease/pathology*
;
Humans
;
Genetic Therapy/methods*
;
Animals
;
Huntingtin Protein/genetics*
;
Cell- and Tissue-Based Therapy/methods*
3.Application of adeno-associated virus-mediated gene therapy in lysosomal storage diseases.
Xue-Qin LIN ; Xiao-Le WANG ; Jing PENG
Chinese Journal of Contemporary Pediatrics 2022;24(11):1281-1287
Lysosomal storage disorders (LSDs) are a group of single-gene inherited metabolic diseases caused by defects in lysosomal enzymes or function-related proteins. Enzyme replacement therapy is the main treatment method in clinical practice, but it has a poor effect in patients with neurological symptoms. With the rapid development of multi-omics, sequencing technology, and bioengineering, gene therapy has been applied in patients with LSDs. As one of the vectors of gene therapy, adeno-associated virus (AAV) has good prospects in the treatment of genetic and metabolic diseases. More and more studies have shown that AAV-mediated gene therapy is effective in LSDs. This article reviews the application of AAV-mediated gene therapy in LSDs.
Humans
;
Dependovirus/genetics*
;
Genetic Therapy/methods*
;
Lysosomal Storage Diseases/therapy*
;
Enzyme Replacement Therapy
;
Proteins/genetics*
4.Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain.
Jianhua MAO ; Yun WANG ; Wei ZHANG ; Yan SHEN ; Guowei ZHANG ; Wenda XI ; Qiang WANG ; Zheng RUAN ; Jin WANG ; Xiaodong XI
Frontiers of Medicine 2022;16(4):584-595
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC + rLC protein had a higher activity than the hHC + hLC protein at comparable expression levels. The specific activity of hHC + rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC + rLC treatment exhibited a visibly higher activity than those treated with hHC + hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC + rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
Animals
;
Dependovirus/genetics*
;
Factor VIII/metabolism*
;
Genetic Therapy/methods*
;
Hemophilia A/therapy*
;
Humans
;
Mice
;
Rats
5.CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
Chao LI ; Eleanor BRANT ; Hikmet BUDAK ; Baohong ZHANG
Journal of Zhejiang University. Science. B 2021;22(4):253-284
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
CRISPR-Cas Systems
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Crops, Agricultural/genetics*
;
Gene Editing/methods*
;
Genetic Therapy
;
Humans
;
Nobel Prize
;
Plant Breeding
6.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
8.Effects of TGF-β1 Overexpression on Biological Characteristics of Human Dental Pulp-derived Mesenchymal Stromal Cells
Hasan SALKIN ; Zeynep Burçin GÖNEN ; Ergül ERGEN ; Dilek BAHAR ; Mustafa ÇETIN
International Journal of Stem Cells 2019;12(1):170-182
OBJECTIVE: The aim of our study was to investigate the effect of Transforming growth factor beta-1 (TGF-β1) gene therapy on the surface markers, multilineage differentiation, viability, apoptosis, cell cycle, DNA damage and senescence of human Dental Pulp-derived Mesenchymal Stromal Cells (hDPSC). METHODS: hDPSCs were isolated from human teeth, and were cultured with 20% Fetal Bovine Serum (FBS) in minimum essential media-alpha (α-MEM). TGF-β1 gene transfer into hDPSCs was performed by electroporation method after the plasmid was prepared. The transfection efficiency was achieved by using western blot and flow cytometry analyses and GFP transfection. Mesenchymal stem cell (MSC) markers, multilineage differentiation, cell proliferation, apoptosis, cell cycle, DNA damage and cellular senescence assays were performed by comparing the transfected and non-transfected cells. Statistical analyses were performed using GraphPad Prism. RESULTS: Strong expression of TGF-β1 in pCMV-TGF-β1-transfected hDPSCs was detected in flow cytometry analysis. TGF-β1 transfection efficiency was measured as 95%. Western blot analysis showed that TGF-β1 protein levels increased at third and sixth days in pCMV-TGF-β1-transfected hDPSCs. The continuous TGF-β1 overexpression in hDPSCs did not influence the immunophenotype and surface marker expression of MSCs. Our results showed that TGF-β1 increased osteogenic and chondrogenic differentiation, but decreased adipogenic differentiation. Overexpression of TGF-β1 increased the proliferation rate and decreased total apoptosis in hDPSCs (p<0.05). The number of cells at “S” phase was higher with TGF-β1 transfection (p<0.05). Cellular senescence decreased in TGF-β1 transfected group (p<0.05). CONCLUSIONS: These results reflect that TGF-β1 has major impact on MSC differentiation. TGF-β1 transfection has positive effect on proliferation, cell cycle, and prevents cellular senescence and apoptosis.
Aging
;
Apoptosis
;
Blotting, Western
;
Cell Aging
;
Cell Cycle
;
Cell Differentiation
;
Cell Proliferation
;
DNA Damage
;
Electroporation
;
Flow Cytometry
;
Genetic Therapy
;
Humans
;
Mesenchymal Stromal Cells
;
Methods
;
Plasmids
;
Population Characteristics
;
Tooth
;
Transfection
;
Transforming Growth Factors
9.A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth.
Yu-Huan BAI ; Xiao-Jing YUN ; Yan XUE ; Ting ZHOU ; Xin SUN ; Yan-Jing GAO
Journal of Zhejiang University. Science. B 2019;20(12):1003-1013
OBJECTIVE:
To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC).
METHODS:
GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM).
RESULTS:
Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues.
CONCLUSIONS
GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.
Adenoviridae
;
Animals
;
Apoptosis
;
Carcinoma, Hepatocellular/therapy*
;
Cell Line, Tumor
;
Female
;
Liver Neoplasms/therapy*
;
Membrane Proteins/genetics*
;
Mice
;
Mice, Inbred BALB C
;
Oncolytic Virotherapy/methods*
;
Phosphotransferases (Alcohol Group Acceptor)/genetics*
;
Promoter Regions, Genetic
10.Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas.
Lan YU ; Xun TIAN ; Chun GAO ; Ping WU ; Liming WANG ; Bei FENG ; Xiaomin LI ; Hui WANG ; Ding MA ; Zheng HU
Frontiers of Medicine 2018;12(5):497-508
Viral infections cause at least 10%-15% of all human carcinomas. Over the last century, the elucidation of viral oncogenic roles in many cancer types has provided fundamental knowledge on carcinogenetic mechanisms and established a basis for the early intervention of virus-related cancers. Meanwhile, rapidly evolving genome-editing techniques targeting viral DNA/RNA have emerged as novel therapeutic strategies for treating virus-related carcinogenesis and have begun showing promising results. This review discusses the recent advances of genome-editing tools for treating tumorigenic viruses and their corresponding cancers, the challenges that must be overcome before clinically applying such genome-editing technologies, and more importantly, the potential solutions to these challenges.
Antiviral Agents
;
therapeutic use
;
CRISPR-Cas Systems
;
Carcinoma
;
genetics
;
therapy
;
virology
;
Gene Editing
;
Genetic Predisposition to Disease
;
Genetic Therapy
;
methods
;
Humans
;
Tumor Virus Infections
;
complications

Result Analysis
Print
Save
E-mail