1.Clinical application of next-generation sequencing in early screening of neonatal diseases.
Li-Hong JIANG ; Ben-Qing WU ; Zheng-Yan ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(4):432-437
OBJECTIVES:
To evaluate the clinical value of next-generation sequencing (NGS) in neonatal disease screening, particularly its advantages when combined with tandem mass spectrometry (MS/MS).
METHODS:
A prospective study was conducted involving blood samples from 1 999 neonates born at the Shenzhen Guangming District People's Hospital, between May and August 2021. All samples were initially screened using MS/MS and fluorescence immunoassay, followed by NGS to detect high-frequency variation sites in 135 related pathogenic genes. Suspected positive variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification in family studies.
RESULTS:
No confirmed positive cases were found in the MS/MS analysis of the 1 999 neonates. Genetic screening identified 58 positive cases (2.90%), 732 carriers of pathogenic genes (36.62%), and 1 209 negative cases (60.48%). One case of neonatal intrahepatic cholestasis was diagnosed (0.05%, 1/1 999). Fluorescence immunoassay identified 39 cases of glucose-6-phosphate dehydrogenase (G6PD) deficiency (1.95%, 39/1 999), while genetic screening identified 43 cases of G6PD deficiency (2.15%, 43/1 999). The fluorescence immunoassay also detected 6 cases of hyperthyrotropinemia (0.30%, 6/1 999), all of whom carried DUOX2 gene variants. The top ten pathogenic gene carrier rates were G6PD (12.8%), DUOX2 (8.7%), HBB (8.2%), ATP7B (6.6%), GJB2 (5.7%), SLC26A4 (5.6%), PAH (5.6%), ACADSB (4.6%), SLC25A13 (4.2%), and SLC22A5 (4.1%).
CONCLUSIONS
NGS can serve as an effective complement to MS/MS, significantly improving the detection rate of inherited metabolic disorders in neonates. When combined with family validation, it enables precise diagnosis, particularly demonstrating complementary advantages in screening for monogenic diseases such as G6PD deficiency.
Humans
;
Infant, Newborn
;
High-Throughput Nucleotide Sequencing/methods*
;
Neonatal Screening/methods*
;
Tandem Mass Spectrometry
;
Prospective Studies
;
Female
;
Male
;
Infant, Newborn, Diseases/diagnosis*
;
Genetic Testing
2.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China
3.High-throughput screening technologies in the engineering of actinomycete strains.
Xueyan LIU ; Meng WANG ; Jifeng LIU ; Yue ZHANG
Chinese Journal of Biotechnology 2025;41(9):3375-3386
Actinomycetes are important producers of high-value natural products, and the engineering of actinomycetes to enhance the biosynthesis of target natural products has long been a hot research topic in the scientific community. However, non-rational engineering methods suffer from low beneficial mutation rates, which limit the efficiency of mutant screening. The integration of high-throughput screening (HTS) technologies can effectively enhance the screening efficiency of elite mutants and significantly shorten the cycle of actinomycete strain engineering. This review comprehensively discusses various HTS technologies suitable for the engineering of actinomycete strains and compares them in terms of application scenarios, advantages, and disadvantages. HTS technologies include microplate-based screening, antimicrobial activity screening, antibiotic resistance screening, fluorescence-activated cell sorting (FACS), and fluorescence-activated droplet sorting (FADS). Additionally, this review summarizes the applications of these technologies in assisting actinomycete strain engineering and enhancing the yields of target compounds. The development and application of HTS technologies have not only facilitated the exploration of natural product resources in actinomycetes but also provided strong support for the rapid and efficient construction of high-performance engineered actinomycete strains.
Actinobacteria/metabolism*
;
High-Throughput Screening Assays/methods*
;
Genetic Engineering/methods*
;
Biological Products/metabolism*
;
Flow Cytometry
;
Metabolic Engineering/methods*
4.Clinical hearing phenotypes analysis of GJB2 gene p.V37I homozygote and compound heterozygote mutation in infants.
Yu RUAN ; Cheng WEN ; Xiaohua CHENG ; Wei ZHANG ; Jinge XIE ; Yue LI ; Lin DENG ; Lihui HUANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(12):1104-1108
Objective:To analyze the hearing phenotypes of p. V37I homozygote and compound heterozygote mutation in GJB2 gene, and to provide basis for genetic counseling. Methods:Fifty-three subjects with p. V37I homozygote and compound heterozygote mutation were recruited at Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital from January 2023 to March 2024. All subjects received universal newborn hearing screening(UNHS), 23-site chip neonatal deafness genetic screening and audiological tests, including ABR, acoustic immittance, DPOAE, ASSR. The results of newborn hearing screening and hearing diagnosis were compared between homozygous mutation group of 30 cases and compound heterozygous mutation group of 23 cases. Results:In 53 cases, the overall refer rate of UNHS was 64.15%(34/53), the refer rate of homozygous mutation group was 80.00%(24/30), which was higher than that of compound heterozygous mutation group(43.48%, 10/23), the difference between the two groups was statistically significant(P<0.05). Three subjects with p. V37I compound heterozygous mutation had passed UNHS and diagnosed with unilateral mild hearing loss. The average age of diagnosis of 53 cases was (3.77±1.40) months, 25 cases with hearing loss accounted for 47.17%, including 13 cases with unilateral, 12 cases with bilateral, 28 cases with normal hearing accounted for 52.83%. There was no significant difference between homozygous mutation group(56.67%, 17/30) and compound heterozygous mutation group(34.78%, 8/23) in the proportion of confirmed hearing loss(P>0.05). Among 37 ears of 25 patients with hearing loss, the proportion of mild, moderate and profound hearing loss were 70.27%(26/37), 27.03%(10/37) and 2.70%(1/37), respectively. The hearing loss degree of the homozygous mutation group and the compound heterozygous mutation group were mainly mild, accounting for 70.37%(19/27) and 70.00%(7/10) respectively. There was no significant difference between the two groups in the distribution of hearing loss degree(P>0.05). Conclusion:The probability of hearing loss was 47.17% in infants of GJB2 gene p. V37I homozygote and compound heterozygote mutation, mainly mild hearing loss. There was no difference in the probability of hearing loss and the distribution of hearing loss degree between the two groups. Patients with p. V37I homozygous and compound heterozygous mutation currently diagnosed as normal hearing need continuous clinical follow-up.
Humans
;
Connexin 26
;
Heterozygote
;
Homozygote
;
Female
;
Phenotype
;
Male
;
Mutation
;
Connexins/genetics*
;
Infant
;
Infant, Newborn
;
Hearing Tests
;
Neonatal Screening
;
Deafness/genetics*
;
Genetic Testing
5.Progress of newborn screening in China.
Hongli JIANG ; Rulai YANG ; Ao DONG ; Benqing WU ; Zhengyan ZHAO
Journal of Zhejiang University. Medical sciences 2023;52(6):673-682
Newborn screening (NBS) plays a significant role in reducing the risk of birth defects. NBS in China began in the early 1980s. Under the protection of laws and regulations and the leadership of the national health administration, approved screening centers in public hospitals took the responsibility for publicity, screening, diagnosis, treatment, follow-up and management of birth defects. As of 2022, 31 provinces (autonomous regions and municipalities directly under the central government) have carried out NBS for phenylketonuria, congenital hypothyroidism, and hearing loss, 23 provinces have carried out screening for glucose-6-phosphate dehydrogenase (with a screening rate of 89.24%), and 24 provinces have carried out screening for congenital adrenal cortical hyperplasia (91.45% screening rate). Over the past four decades, screening techniques have evolved from bacterial inhibition, fluorescence analysis, and tandem mass spectrometry for the detection of biochemical markers to genetic testing, which has greatly contributed to the expansion of the types of diseases screened for. The combined use of metabolomics and genomics is currently being explored. Effective management and rigorous quality control of NBS are prerequisites for improving the quality and ensuring the accuracy of screening. The Quality Management System for Newborn Screening System Network (QMS-NBS), established by the National Center for Clinical Laboratories, covers all screening centers and related blood collection agencies. The operation of the QMS-NBS allows the quality and performance of screening to be transparent and measurable, ensuring the quality and efficiency of screening. This article provides an overview of the history of NBS, especially the evolution of policies for the NBS in China, the construction of screening institutions, the number of newborns screened, the incidence rates of screened diseases, the changes in screening technology, the expansion of new diseases screened for, and the quality control of NBS. Overall, the progress in NBS in China has not only benefited from the development and standardization at the technological level, but also benefited from the construction of policies, regulations and ethics.
Infant, Newborn
;
Humans
;
Neonatal Screening
;
Phenylketonurias
;
Genetic Testing
;
Congenital Hypothyroidism
;
China
6.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
7.Results of carrier screening for Spinal muscular atrophy among 35 145 reproductive-aged individuals from Dongguan region.
Ying ZHAO ; Jiwu LOU ; Youqing FU ; Yunshi DAI ; Qiaoyi LIANG ; Manna SUN ; Junru TAN ; Yanhui LIU
Chinese Journal of Medical Genetics 2023;40(6):655-660
OBJECTIVE:
To carry out carrier screening for Spinal muscular atrophy (SMA) in reproductive-aged individuals from Dongguan region and determine the carrier frequency of SMN1 gene mutations.
METHODS:
Reproductive-aged individuals who underwent SMN1 genetic screening at the Dongguan Maternal and Child Health Care Hospital from March 2020 to August 2022 were selected as the study subjects. Deletions of exon 7 and 8 (E7/E8) of the SMN1 gene were detected by real-time fluorescence quantitative PCR (qPCR), and prenatal diagnosis was provided for carrier couples by multiple ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 35 145 subjects, 635 were found to be carriers of SMN1 E7 deletion (586 with heterozygous E7/E8 deletion, 2 with heterozygous E7 deletion and homozygous E8 deletion, and 47 with sole heterozygous E7 deletion). The carrier frequency was 1.81% (635/35 145), with 1.59% (29/1 821) in males and 1.82% (606/33 324) in females. There was no significant difference between the two genders (χ² = 0.497, P = 0.481). A 29-year-old woman was found to harbor homozygous deletion of SMN1 E7/E8, and was verified to have a SMN1∶SMN2 ratio of [0∶4], none of her three family members with a [0∶4] genotype had clinical symptoms. Eleven carrier couples had accepted prenatal diagnosis, and one fetus was found to have a [0∶4] genotype, and the pregnancy was terminated.
CONCLUSION
This study has determined the SMA carrier frequency in Dongguan region for the first time and provided prenatal diagnosis for carrier couples. The data can provide a reference for genetic counseling and prenatal diagnosis, which has important clinical implications for the prevention and control of birth defects associated with SMA.
Humans
;
Child
;
Pregnancy
;
Male
;
Female
;
Adult
;
Homozygote
;
Sequence Deletion
;
Prenatal Diagnosis
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Survival of Motor Neuron 1 Protein/genetics*
;
Genetic Carrier Screening
8.Analysis of clinical characteristics and ACADM gene variants in four children with Medium chain acyl-CoA dehydrogenase deficiency.
Mengjun XIAO ; Zhenhua XIE ; Jing LIU ; Xian LI ; Qiang ZHANG ; Zhenkun ZHANG ; Dongxiao LI
Chinese Journal of Medical Genetics 2023;40(7):787-794
OBJECTIVE:
To explore the clinical and genetic characteristics of four patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD).
METHODS:
Four children who had presented at the Children's Hospital Affiliated to Zhengzhou University between August 2019 and August 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to whole exome sequencing (WES).
RESULTS:
All of the four children were diagnosed with MCADD. Blood amino acid and ester acyl carnitine spectrum test showed that the concentration of octanoyl carnitine (C8) was significantly increased. The main clinical manifestations included poor mental response (3 cases), intermittent diarrhea with abdominal pain (1 case), vomiting (1 case), increased transaminase (3 cases), and metabolic acidosis (2 cases). Five variants were identified by genetic testing, among which c.341A>G (p.Y114C) was unreported previously. Three were missense variants, one was frameshift variant and one was splicing variant.
CONCLUSION
The clinical heterogeneity of MCADD is obvious, and the severity of the disease may vary. WES can assist with the diagnosis. Delineation of the clinical symptoms and genetic characteristics of the disease can facilitate early diagnosis and treatment of the disease.
Child
;
Humans
;
Acyl-CoA Dehydrogenase/genetics*
;
Carnitine
;
Genetic Testing
;
Lipid Metabolism, Inborn Errors/genetics*
;
Neonatal Screening
9.Results of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
Hongqin HE ; Li SU ; Jia XU ; Yiwen WANG ; Yarong WANG ; Cui GUO ; Dandan LINGHU
Chinese Journal of Medical Genetics 2023;40(7):815-820
OBJECTIVE:
To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
METHODS:
Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test.
RESULTS:
Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05).
CONCLUSION
Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.
Infant, Newborn
;
Humans
;
Connexins/genetics*
;
Retrospective Studies
;
Deafness/genetics*
;
Connexin 26/genetics*
;
Neonatal Screening/methods*
;
Mutation
;
Genetic Testing/methods*
;
China/epidemiology*
;
Hearing
;
DNA Mutational Analysis
10.Analysis of results of concurrent hearing and deafness genetic screening and follow up of 33 911 newborns.
Jie LEI ; Luhao HAN ; Xi DENG ; Min LONG ; Yanwei XIAO ; Xiaowen LIN ; Jing ZHANG
Chinese Journal of Medical Genetics 2021;38(1):32-36
OBJECTIVE:
To analyze the results of concurrent hearing and deafness genetic screening and follow up of newborns.
METHODS:
In total 33 911 babies born to 5 designated hospitals in Nanshan District of Shenzhen city from October 2017 to December 2019 were included. All subjects underwent concurrent hearing and deafness genetic screening covering 21 variants of 4 genes including GJB2, SLC26A4, GJB3 and Mt12SrRNA. For those with positive results, Sanger sequencing was carried out for confirmation.
RESULTS:
93.32% subjects passed the first-round hearing screening, and 87.01% passed the recheck testing. The overall detection rate was 4.18%. The detection rates for GJB2, SLC26A4, GJB3 and Mt12srRNA variants were 1.98%, 1.58%, 0.37% and 0.25%, respectively. 126 and 84 subjects were found with high risk for delayed-onset and drug-induced hearing loss, respectively. In addition, 4 and 5 subjects were found to harbor homozygous/compound heterozygous variants of the GJB2 and SLC26A4 genes, respectively. Concurrent screening showed that subjects (with heterozygous variants) who did not passed the two round hearing test were as follows: GJB2 with 6.75% in the first round and 2.61% in the second round testing, SLC26A4 (3.3%/1.2%), GJB3 (0.72%/0.14%) and 12SrRNA (0.36%/Nil), respectively. Moreover, the No-pass rate in the subjects with homozygous or compound variants in single gene, heterozygous variant in single gene, heterozygous variant in multiple genes, and homozygous variant in GJB3 gene were significantly higher than the subjects with negative results of genetic screening.
CONCLUSION
Concurrent newborn genetic screening can enhance the effectiveness of hearing screening and enable earlier identification and intervention for children with hearing impairment. Follow-up can improve the diagnostic rate for children who are positive for the concurrent screening. Nevertheless, genetic and hearing screening cannot replace the diagnostic testing. It is necessary to conduct comprehensive analysis for the results of genetic and hearing screening and radiological examinations. Sanger sequencing and next-generation sequencing are critical for ascertain the diagnosis.
China/epidemiology*
;
DNA Mutational Analysis
;
Deafness/genetics*
;
Follow-Up Studies
;
Genes/genetics*
;
Genetic Testing/statistics & numerical data*
;
Hearing/genetics*
;
Hearing Tests/statistics & numerical data*
;
Humans
;
Infant, Newborn
;
Mutation
;
Neonatal Screening

Result Analysis
Print
Save
E-mail