1.Silencing GmWRKY33B genes leads to reduced disease resistance in soybean.
Chenli ZHONG ; Wenxu WANG ; Lina LIAO ; Jianzhong LIU
Chinese Journal of Biotechnology 2024;40(1):163-176
The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.
Glycine max/genetics*
;
Disease Resistance/genetics*
;
Biological Assay
;
Dimethylallyltranstransferase
;
Gene Silencing
3.Effects of Foxp3 gene silencing on the expression of inflammatory cytokines and the proliferation and migration of human periodontal ligament fibroblasts in an inflammatory environment.
Ting LU ; Jiahao ZHU ; Shihe YANG ; Zhe SHEN ; Liangjun ZHONG
West China Journal of Stomatology 2023;41(3):269-275
OBJECTIVES:
This study aimed to clarify the effects of Foxp3 silencing on the expression of inflammatory cytokines in human periodontal ligament cells (hPDLFs) in an inflammatory environment and on cell proliferation and invasiveness, as well as to explore the role of Foxp3 gene in the development of periodontitis.
METHODS:
An small interfering RNA (siRNA) construct specific for Foxp3 was transfected into hPDLFs. Foxp3 silencing efficiency was verified by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, and the siRNA with the optimum silencing effect of Foxp3 gene was screened. Using lipopolysaccharide to simulate an inflammatory environment in vitro, CCK-8 detected the effect of silencing Foxp3 on hPDLFs proliferation under inflammatory conditions. Wound-healing experiments and transwell assays were conducted to detect the effect of silencing Foxp3 on hPDLF migration under inflammatory conditions. The expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 was detected by RT-PCR and Western blotting under inflammatory conditions.
RESULTS:
After siRNA transfection, RT-PCR and Western blotting analyses showed that the expression of Foxp3 mRNA in the Foxp3-si3 group decreased significantly (t=21.03, P<0.000 1), and the protein expression of Foxp3 also decreased significantly (t=12.8, P<0.001). In the inflammatory environment, Foxp3 gene silencing had no significant effect on hPDLFs proliferation (P>0.05), and Foxp3 gene silencing promoted hPDLFs migration (P<0.05). Moreover, the expression of IL-6 and IL-8 increased (P<0.05).
CONCLUSIONS
In an inflammatory environment, Foxp3 gene silencing promoted hPDLFs migration but had no significant effect on hPDLFs proliferation. The expression of inflammatory factors expressed in hPDLFs increased after Foxp3 gene silencing, indicating that Foxp3 gene inhibited inflammation in periodontitis.
Humans
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Cytokines/metabolism*
;
Fibroblasts/metabolism*
;
Forkhead Transcription Factors/metabolism*
;
Gene Silencing
;
Interleukin-6/metabolism*
;
Interleukin-8/metabolism*
;
Periodontal Ligament/metabolism*
;
Periodontitis/metabolism*
;
RNA, Small Interfering/metabolism*
;
Transcription Factors/metabolism*
4.Advances in the RNA-targeting CRISPR-Cas systems.
Chinese Journal of Biotechnology 2023;39(4):1363-1373
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated proteins) system is an adaptive immune system of bacteria and archaea against phages, plasmids and other exogenous genetic materials. The system uses a special RNA (CRISPR RNA, crRNA) guided endonuclease to cut the exogenous genetic materials complementary to crRNA, thus blocking the infection of exogenous nucleic acid. According to the composition of the effector complex, CRISPR-Cas system can be divided into two categories: class 1 (including type Ⅰ, Ⅳ, and Ⅲ) and class 2 (including type Ⅱ, Ⅴ, and Ⅵ). Several CRISPR-Cas systems have been found to have very strong ability to specifically target RNA editing, such as type Ⅵ CRISPR-Cas13 system and type Ⅲ CRISPR-Cas7-11 system. Recently, several systems have been widely used in the field of RNA editing, making them a powerful tool for gene editing. Understanding the composition, structure, molecular mechanism and potential application of RNA-targeting CRISPR-Cas systems will facilitate the mechanistic research of this system and provide new ideas for developing gene editing tools.
CRISPR-Cas Systems/genetics*
;
RNA/genetics*
;
Bacteria/genetics*
;
Gene Editing
;
Archaea
5.Generation of Mlk3 KO mice by CRISPR/Cas9 and its effect on blood pressure.
Shijuan GAO ; Guangming FANG ; Yanhong ZHANG ; Jie DU
Chinese Journal of Biotechnology 2023;39(4):1644-1654
To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.
Animals
;
Mice
;
Mice, Knockout
;
CRISPR-Cas Systems
;
Blood Pressure
;
Gene Knockout Techniques
;
Zygote
6.Multiplex gene editing and regulation techniques based on CRISPR/Cas system.
Xiangrui FAN ; Junyan WANG ; Liya LIANG ; Rongming LIU
Chinese Journal of Biotechnology 2023;39(6):2449-2464
The CRISPR/Cas systems comprising the clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an acquired immune system unique to archaea or bacteria. Since its development as a gene editing tool, it has rapidly become a popular research direction in the field of synthetic biology due to its advantages of high efficiency, precision, and versatility. This technique has since revolutionized the research of many fields including life sciences, bioengineering technology, food science, and crop breeding. Currently, the single gene editing and regulation techniques based on CRISPR/Cas systems have been increasingly improved, but challenges still exist in the multiplex gene editing and regulation. This review focuses on the development and application of multiplex gene editing and regulation techniques based on the CRISPR/Cas systems, and summarizes the techniques for multiplex gene editing or regulation within a single cell or within a cell population. This includes the multiplex gene editing techniques developed based on the CRISPR/Cas systems with double-strand breaks; or with single-strand breaks; or with multiple gene regulation techniques, etc. These works have enriched the tools for the multiplex gene editing and regulation and contributed to the application of CRISPR/Cas systems in the multiple fields.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Bacteria/genetics*
;
Archaea
;
Bioengineering
7.Precision gene editing technologies based on CRISPR/Cas9: a review.
Shan XUE ; Shuya WANG ; Li LIU ; Qiaofang ZHONG ; Zaiquan CHENG ; Suqin XIAO
Chinese Journal of Biotechnology 2023;39(7):2566-2578
Gene editing technology is a genetic operation technology that can modify the DNA sequence at the genomic level. The precision gene editing technology based on CRISPR/Cas9 system is a gene editing technology that is easy to operate and widely used. Unlike the traditional CRISPR/Cas9 system, the precision gene editing technology can perform site-directed mutation of genes without DNA template. This review summarizes the recent development of precision gene editing technology based on CRISPR/Cas9, and prospects the challenges and opportunities of this technology.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Mutation
;
Genome
8.Application of virus-induced gene silencing technology to investigate the phytochrome metabolism mechanism: a review.
Duo PAN ; Songyue ZHANG ; Fangyi LIU ; Qingyin TIAN ; Xiulian YANG ; Lianggui WANG ; Yuanzheng YUE
Chinese Journal of Biotechnology 2023;39(7):2579-2599
Color is an important indicator for evaluating the ornamental traits of horticultural plants, and plant pigments is a key factor affecting the color phenotype of plants. Plant pigments and their metabolites play important roles in color formation of ornamental organs, regulation of plant growth and development, and response to adversity stress. It has therefore became a hot topic in the field of plant research. Virus-induced gene silencing (VIGS) is a vital genomics tool that specifically reduces host endogenous gene expression utilizing plant homology-dependent defense mechanisms. In addition, VIGS enables characterization of gene function by rapidly inducing the gene-silencing phenotypes in plants. It provides an efficient and feasible alternative for verifying gene function in plant species lacking genetic transformation systems. This paper reviews the current status of the application of VIGS technology in the biosynthesis, degradation and regulatory mechanisms of plant pigments. Moreover, this review discusses the potential and future prospects of VIGS technology in exploring the regulatory mechanisms of plant pigments, with the aim to further our understandings of the metabolic processes and regulatory mechanisms of different plant pigments as well as improving plant color traits.
Plant Viruses/genetics*
;
Plants/genetics*
;
Gene Silencing
;
Plant Development
;
Gene Expression Regulation, Plant
;
Genetic Vectors
9.Development of a tau-V337M mouse model using CRISPR/Cas9 system and enhanced ssODN-mediated recombination.
Lijiao CHEN ; Li DENG ; Wenjie SUN ; Jie LIU ; Ting ZHANG ; Shangang LI
Chinese Journal of Biotechnology 2023;39(7):3003-3014
The generation of a tau-V337M point mutation mouse model using gene editing technology can provide an animal model with fast disease progression and more severe symptoms, which facilitate the study of pathogenesis and treatment of Alzheimer's disease (AD). In this study, single guide RNAs (sgRNA) and single-stranded oligonucleotides (ssODN) were designed and synthesized in vitro. The mixture of sgRNA, Cas9 protein and ssODN was microinjected into the zygotes of C57BL/6J mice. After DNA cutting and recombination, the site homologous to human 337 valine (GTG) in exon 11 was mutated into methionine (ATG). In order to improve the efficiency of recombination, a Rad51 protein was added. The female mice mated with the nonvasectomy male mice were used as the surrogates. Subsequently, the 2-cell stage gene edited embryos were transferred into the unilateral oviduct, and the F0 tau-V337M mutation mice were obtained. Higher mutation efficiency could be obtained by adding Rad51 protein. The F0 tau-V337M point mutation mice can pass the mutation on to the F1 generation mice. In conclusion, this study successfully established the first tau-V337M mutation mouse by using Cas9, ssODN and Rad51. These results provide a new method for developing AD mice model which can be used in further research on the pathogenesis and treatment of AD.
Animals
;
Male
;
Female
;
Mice
;
Humans
;
CRISPR-Cas Systems/genetics*
;
RNA, Guide, CRISPR-Cas Systems
;
Rad51 Recombinase/genetics*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Recombination, Genetic
10.Correction of the pathogenic mutation in the G6PC3 gene by adenine base editing in mutant embryos.
Man HONG ; Ping WANG ; Tao SHANGGUAN ; Guang Lei LI ; Rui Peng BIAN ; Wei HE ; Wen JIANG ; Jie Ping CHEN
Chinese Journal of Hematology 2023;44(4):308-315
Objective: To determine whether the adenine base editor (ABE7.10) can be used to fix harmful mutations in the human G6PC3 gene. Methods: To investigate the safety of base-edited embryos, off-target analysis by deep sequencing was used to examine the feasibility and editing efficiency of various sgRNA expression vectors. The human HEK293T mutation models and human embryos were also used to test the feasibility and editing efficiency of correction. Results: ①The G6PC3(C295T) mutant cell model was successfully created. ②In the G6PC3(C295T) mutant cell model, three distinct Re-sgRNAs were created and corrected, with base correction efficiency ranging from 8.79% to 19.56% . ③ ABE7.10 could successfully fix mutant bases in the human pathogenic embryo test; however, base editing events had also happened in other locations. ④ With the exception of one noncoding site, which had a high safety rate, deep sequencing analysis revealed that the detection of 32 probable off-target sites was <0.5% . Conclusion: This study proposes a new base correction strategy based on human pathogenic embryos; however, it also produces a certain nontarget site editing, which needs to be further analyzed on the PAM site or editor window.
Humans
;
Gene Editing
;
CRISPR-Cas Systems
;
Adenine
;
HEK293 Cells
;
Mutation
;
Glucose-6-Phosphatase/metabolism*

Result Analysis
Print
Save
E-mail