1.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
2.Construction and validation of sheep VASA gene knock-in vector based on CRISPR/Cas9 system.
Hua YANG ; Zifei LIU ; Wenli LÜ ; Feng WANG ; Yanli ZHANG
Chinese Journal of Biotechnology 2023;39(10):4219-4233
This study aimed to explore the expression changes of VASA gene in sheep testis development and to construct VASA gene knock-in vector to prepare for the study on the differentiation of sheep germ cells in vitro. The testicular tissues of 3-month-old (3M) and 9-month-old (9M) sheep which represent immature and mature stages, respectively, were collected. The differential expression of VASA gene was analyzed by quantitative real-time PCR (qPCR) and Western blotting, and the location of VASA gene was detected by immunohistochemistry. The sgRNA targeting the VASA gene was designed and homologous recombination vectors were constructed by PCR. Subsequently, plasmids were transferred into sheep ear fibroblasts. The VASA gene was activated in combination with CRISPR/dCas9 technology to further verify the efficiency of the vector. The results showed that the expression level of VASA gene increased significantly with the development of sheep testis (P < 0.01), and was mainly located in spermatocytes and round spermatids. The knock-in vector of VASA gene was constructed by CRISPR/Cas9 system, and the Cas9-gRNA vector and pEGFP-PGK puro-VASA vector were transfected into ear fibroblasts. After CRISPR/dCas9 system was activated, ear fibroblasts successfully expressed VASA gene. The results suggest that VASA gene plays a potential function in sheep testicular development and spermatogenesis, and the VASA gene knock-in vector can be constructed in vitro through the CRISPR/Cas9 system. Our results provided effective research tools for further research of germ cell development and differentiation.
Male
;
Animals
;
Sheep/genetics*
;
CRISPR-Cas Systems/genetics*
;
Gene Knock-In Techniques
;
RNA, Guide, CRISPR-Cas Systems
;
Plasmids
;
Germ Cells
3.Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators.
Bingzhou HAN ; Yage ZHANG ; Xuetong BI ; Yang ZHOU ; Christopher J KRUEGER ; Xinli HU ; Zuoyan ZHU ; Xiangjun TONG ; Bo ZHANG
Protein & Cell 2021;12(1):39-56
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Alleles
;
Animals
;
CRISPR-Cas Systems
;
DNA End-Joining Repair
;
DNA, Circular/metabolism*
;
Embryo, Nonmammalian
;
Gene Editing/methods*
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Genes, Reporter
;
Genetic Loci
;
Genotyping Techniques
;
Green Fluorescent Proteins/metabolism*
;
Integrases/metabolism*
;
Luminescent Proteins/metabolism*
;
Mutagenesis, Insertional
;
Single-Cell Analysis
;
Zebrafish/metabolism*
4.Research progress on identification of pharmacodynamic substance basis of traditional Chinese medicine based on target constituent knock-out/knock-in technology.
Wen-Bo CUI ; Ai-Ping LI ; Ting CUI ; Liu YANG ; Xue-Mei QIN
China Journal of Chinese Materia Medica 2020;45(6):1279-1286
The effective material basis of traditional Chinese medicine(TCM) is an indispensable part of studies on TCM, and each technology has its advantages and disadvantages. The target constituent knock-out/knock-in technology has attracted much attention since it was proposed because of its unique advantages of regarding the extract of the formula as a whole, which can better reflect the characteristics of multi-component and multi-target integration and regulation of TCM. This method investigated the contribution of target constituent to the overall efficacy of a TCM by analyzing the changes in efficacy of the remaining formula before and after knock-out/knock-in of the target constitution. The application of this model not only facilitates studies of the effective constituents of TCM, but also help to develop the quality control standard of TCM. However, the application of this model is restricted due to the limitation of target constituent separation technology. By reviewing the literatures in recent years, this study summarized the research process and application of this method for a reference.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Medicine, Chinese Traditional
;
Quality Control
5.CRISPR/Cas9-mediated foreign gene targeted knock-in into the chicken EAV-HP genome.
Miaomiao GUO ; Likai YANG ; Weili DU ; Tao ZHANG ; Hongzhao LU ; Ling WANG
Chinese Journal of Biotechnology 2019;35(2):236-243
The study aims to use CRISPR/Cas9 introducing foreign gene targeted knock-in into chicken EAV-HP genome. First, specific primers were designed for amplification of EAV-HP left, right homologous arms and enhanced green fluorescent protein (eGFP) expression cassette. PCR products of homologous arms were ligated to both sides of eGFP by overlap extension PCR, resulting in full-length donor DNA fragment designated as LER. Then LER fragments were cloned into pMD19-T to obtain donor vector pMDT-LER. Subsequently, the donor vector pMDT-LER was transfected into HEK293T cells to verify the expression of eGFP gene. Furthermore, co-transfection of CRISPR/Cas9 expression vector and pMDT-LER into chicken DF-1 cells was performed to achieve eGFP transgenic cells. Meanwhile, eGFP expression was observed in cells, and the event of eGFP integration into EAV-HP genome was detectable by amplification of target DNA. Finally, the transgenic DF-1 cells were passaged seven times, and the stable integration and expression of eGFP was checked by PCR and Western blotting. These results demonstrated that eGFP gene was knocked into the EAV-HP genome successfully, which provides a new integration site for research of transgenic chicken.
Animals
;
CRISPR-Cas Systems
;
Chickens
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Gene Knock-In Techniques
;
Genome
;
HEK293 Cells
;
Humans
6.Effect of integration loci of genome on heterologous gene expression in Saccharomyces cerevisiae.
Wenzheng ZHANG ; Jijun TANG ; Bingzhi LI ; Yingjin YUAN
Chinese Journal of Biotechnology 2016;32(7):901-911
Chromosomal integration of heterologous genes or pathways is preferred over the use of episomal plasmids for its inherently stability and thus more desirable in the industrial setting. However, the position of integration of heterologous genes in the genome influences the expression levels. In combination of high throughput transformation of the Yeast Knock-out Collection (YKO) and FACS analysis, the position effect on heterologous reporter gene gfp was identified across the whole genome in yeast. In total 428 high-expressed sites and 444 low-expressed sites were spotted, providing massive data to analyze patterns and reasons for region dependency of gene expression on the genome-wide scale.
Gene Expression Regulation, Fungal
;
Gene Knock-In Techniques
;
Genes, Reporter
;
Genome, Fungal
;
Saccharomyces cerevisiae
;
genetics
7.BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs.
Shaozheng SONG ; Mengmin ZHU ; Yuguo YUAN ; Yao RONG ; Sheng XU ; Si CHEN ; Junyan MEI ; Yong CHENG
Chinese Journal of Biotechnology 2016;32(3):329-338
To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.
Animals
;
Animals, Genetically Modified
;
genetics
;
Female
;
Fibroblasts
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Goats
;
genetics
;
Humans
;
Lactoferrin
;
genetics
;
Lactoglobulins
;
genetics
;
Milk
;
chemistry
;
Nuclear Transfer Techniques
;
Plasmids
;
Pregnancy
;
Transfection
9.Melanocortin-4 receptor expression in the cuneiform nucleus is involved in modulation of opioidergic signaling.
Yong-tang SONG ; Tao-tao LIU ; Li FENG ; Tao ZHANG ; Hong-bing XIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):662-665
Substantial evidence has suggested that deep brain stimulation of the cuneiform nucleus has become a remarkable treatment option for intractable pain, but the possible mechanism is poorly understood. Using a melanocortin-4 receptor (MC4R)-green fluorescent protein (GFP) reporter knockin mouse, we showed that a large number of MC4R-GFP-positive neurons were expressed in the cuneiform nucleus. Immunofluorescence revealed that approximately 40%-50% of MC4R-GFP-positive neurons expressed mu opioid receptors, indicating that they were opioidergic signaling. Our findings support the hypothesis that MC4R expression in the cuneiform nucleus is involved in the modulation of opioidergic signaling.
Animals
;
Gene Expression Regulation
;
Gene Knock-In Techniques
;
Genes, Reporter
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Transgenic
;
Microtomy
;
Midbrain Reticular Formation
;
cytology
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Receptor, Melanocortin, Type 4
;
genetics
;
metabolism
;
Receptors, Opioid, mu
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Signal Transduction
10.Transformation of phosphotransferase system in Escherichia coli.
Mengrong XIAO ; Liang ZHANG ; Shuangping LIU ; Guiyang SHI
Chinese Journal of Biotechnology 2014;30(10):1561-1572
We constructed several recombinant Escherichia coli strains to transform phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS system) and compared the characteristics of growth and metabolism of the mutants. We knocked-out the key genes ptsI and ptsG in PTS system by using Red homologous recombination in E. coli and meanwhile we also knocked-in the glucose facilitator gene glf from Zymomonas mobilis in the E. coli chromosome. Recombinant E. coli strains were constructed and the effects of cell growth, glucose consumption and acetic acid accumulation were also evaluated in all recombinant strains. The deletion of gene ptsG and ptsI inactivated some PTS system functions and inhibited the growth ability of the cell. Expressing the gene glf can help recombinant E. coli strains re-absorb the glucose through Glf-Glk (glucose facilitator-glucokinase) pathway as it can use ATP to phosphorylate glucose and transport into cell. This pathway can improve the availability of glucose and also reduce the accumulation of acetic acid; it can also broaden the carbon flux in the metabolism pathway.
Biological Transport
;
Escherichia coli
;
enzymology
;
genetics
;
Gene Deletion
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Glucose
;
metabolism
;
Phosphoenolpyruvate Sugar Phosphotransferase System
;
genetics
;
Zymomonas
;
genetics

Result Analysis
Print
Save
E-mail