1.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
2.Small nucleolar RNA host gene 1 (SNHG1) facilitates gemcitabine chemosensitivity in gallbladder cancer by regulating the miR-23b-3p/phosphatase and tensin homolog (PTEN) pathway.
Hui WANG ; Yixiang GU ; Miaomiao GUO ; Ming ZHAN ; Min HE ; Yang ZHANG ; Linhua YANG ; Yingbin LIU
Chinese Medical Journal 2025;138(21):2783-2792
BACKGROUND:
Growing evidence suggests that long non-coding RNAs (lncRNAs) exert pivotal roles in fostering chemoresistance across diverse tumors. Nevertheless, the precise involvement of lncRNAs in modulating chemoresistance within the context of gallbladder cancer (GBC) remains obscure. This study aimed to uncover how lncRNAs regulate chemoresistance in gallbladder cancer, offering potential targets to overcome drug resistance.
METHODS:
To elucidate the relationship between gemcitabine sensitivity and small nucleolar RNA host gene 1 ( SNHG1 ) expression, we utilized publicly available GBC databases, GBC tissues from Renji Hospital collected between January 2017 and December 2019, as well as GBC cell lines. The assessment of SNHG1, miR-23b-3p, and phosphatase and tensin homolog (PTEN) expression was performed using in situ hybridization, quantitative real-time polymerase chain reaction, and western blotting. The cell counting kit-8 (CCK-8) assay was used to quantify the cell viability. Furthermore, a GBC xenograft model was employed to evaluate the impact of SNHG1 on the therapeutic efficacy of gemcitabine. Receiver operating characteristic (ROC) curve analyses were executed to assess the specificity and sensitivity of SNHG1.
RESULTS:
Our analyses revealed an inverse correlation between the lncRNA SNHG1 and gemcitabine resistance across genomics of drug sensitivity in cancer (GDSC) and Gene Expression Omnibus (GEO) datasets, GBC cell lines, and patients. Gain-of-function investigations underscored that SNHG1 heightened the gemcitabine sensitivity of GBC cells in both in vitro and in vivo settings. Mechanistic explorations illuminated that SNHG1 could activate PTEN -a commonly suppressed tumor suppressor gene in cancers-thereby curbing the development of gemcitabine resistance in GBC cells. Notably, microRNA (miRNA) target prediction algorithms unveiled the presence of miR-23b-3p binding sites within SNHG1 and the 3'-untranslated region (UTR) of PTEN . Moreover, SNHG1 acted as a sponge for miR-23b-3p, competitively binding to the 3'-UTR of PTEN , thereby amplifying PTEN expression and heightening the susceptibility of GBC cells to gemcitabine.
CONCLUSION
The SNHG1/miR-23b-3p/PTEN axis emerges as a pivotal regulator of gemcitabine sensitivity in GBC cells, holding potential as a promising therapeutic target for managing GBC patients.
Humans
;
Deoxycytidine/pharmacology*
;
PTEN Phosphohydrolase/genetics*
;
Gemcitabine
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/genetics*
;
Gallbladder Neoplasms/genetics*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Drug Resistance, Neoplasm/genetics*
;
Mice, Nude
;
Antimetabolites, Antineoplastic
;
Gene Expression Regulation, Neoplastic
3.Role of noncoding RNA and protein interaction in pancreatic cancer.
Zhang LI ; Tingting ZHANG ; Xiaojuan YANG ; Yong PENG
Chinese Medical Journal 2025;138(9):1019-1036
Noncoding RNAs (ncRNAs) are a class of RNA molecules with little or no protein-coding potential. Emerging evidence indicates that ncRNAs are frequently dysregulated and play pivotal roles in the pathogenesis of pancreatic cancer. Their aberrant expression can arise from chromosomal abnormalities, dysregulated transcriptional control, and epigenetic modifications. ncRNAs function as protein scaffolds or molecular decoys to modulate interactions between proteins and other biomolecules, thereby regulating gene expression and contributing to pancreatic cancer progression. In this review, we summarize the mechanisms underlying ncRNA dysregulation in pancreatic cancer, emphasize the biological significance of ncRNA-protein interactions, and highlight their clinical relevance. A deeper understanding of ncRNA-protein interactions is essential to elucidate molecular mechanisms and advance translational research in pancreatic cancer.
Humans
;
Pancreatic Neoplasms/metabolism*
;
RNA, Untranslated/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
4.CCDC97 influences the immune microenvironment and biological functions in HCC.
Lingling MO ; Xinyue WU ; Xiaohua PENG ; Chuang CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):23-30
Objective To explore the clinical and immunological significance of CCDC97 in hepatocellular carcinoma (HCC). Methods Clinical data and RNA sequencing results from HCC patients were retrieved from TCGA and ICGC databases. Bioinformatics analysis and in vitro experiments were performed to investigate the role of CCDC97 in HCC. Results The expression level of CCDC97 was elevated in HCC patients and HCC cells, closely associated with pathological features and prognosis. CCDC97 was identified as a novel prognostic biomarker. It is linked to the spliceosome pathway, which is significantly active in tumors and potentially promotes carcinogenesis. CCDC97 is also highly expressed in various immune cells and is associated with microenvironment. Furthermore, knocking down CCDC97 in vitro suppressed cell migration, invasion, and proliferation. Conclusion CCDC97 plays a critical role in HCC progression and the immune microenvironment, making it a potential target for prognosis and therapeutic intervention.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Tumor Microenvironment/genetics*
;
Cell Movement/genetics*
;
Cell Proliferation
;
Prognosis
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/genetics*
;
Male
5.A novel glycolysis-related prognostic risk model for colorectal cancer patients based on single-cell and bulk transcriptomic data.
Kai YAO ; Jingyi XIA ; Shuo ZHANG ; Yun SUN ; Junjie MA ; Bo ZHU ; Li REN ; Congli ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):105-115
Objective To explore the prognostic value of glycolysis-related genes in colorectal cancer (CRC) patients and formulate a novel glycolysis-related prognostic risk model. Methods Single-cell and bulk transcriptomic data of CRC patients, along with clinical information, were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Glycolysis scores for each sample were calculated using single-sample Gene Set Enrichment Analysis (ssGSEA). Kaplan-Meier survival curves were generated to analyze the relationship between glycolysis scores and overall survival. Novel glycolysis-related subgroups were defined among the cell type with the highest glycolysis scores. Gene enrichment analysis, metabolic activity assessment, and univariate Cox regression were performed to explore the biological functions and prognostic impact of these subgroups. A prognostic risk model was built and validated based on genes significantly affecting the prognosis. Gene Set Enrichment Analysis (GSEA) was conducted to explore differences in biological processes between high- and low-risk groups. Differences in immune microenvironment and drug sensitivity between these groups were assessed using R packages. Potential targeted agents for prognostic risk genes were predicted using the Enrichr database. Results Tumor tissues showed significantly higher glycolysis scores than normal tissues, which was associated with a poor prognosis in CRC patients. The highest glycolysis score was observed in epithelial cells, within which we defined eight novel glycolysis-related cell subpopulations. Specifically, the P4HA1+ epithelial cell subpopulation was associated with a poor prognosis. Based on signature genes of this subpopulation, a six-gene prognostic risk model was formulated. GSEA revealed significant biological differences between high- and low-risk groups. Immune microenvironment analysis demonstrated that the high-risk group had increased infiltration of macrophages and tumor-associated fibroblasts, along with evident immune exclusion and suppression, while the low-risk group exhibited higher levels of B cell and T cell infiltration. Drug sensitivity analysis indicated that high-risk patients were more sensitive to Abiraterone, while low-risk patients responded to Cisplatin. Additionally, Valproic acid was predicted as a potential targeted agent. Conclusion High glycolytic activity is associated with a poor prognosis in CRC patients. The novel glycolysis-related prognostic risk model formulated in this study offers significant potential for enhancing the diagnosis and treatment of CRC.
Humans
;
Colorectal Neoplasms/pathology*
;
Glycolysis/genetics*
;
Prognosis
;
Transcriptome
;
Tumor Microenvironment/genetics*
;
Gene Expression Profiling
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Male
;
Female
;
Kaplan-Meier Estimate
6.Potential molecular mechanism of lncRNAs HOTAIR in malignant metastasis of esophageal cancer.
Kaijin LU ; Jiangfeng SHEN ; Guang HAN ; Quan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):236-244
Objective To elucidate the molecular mechanism by which exosomes (Exo) derived from cancer-associated fibroblasts (CAF) carrying HOX transcript antisense intergenic RNA (lncRNA HOTAIR) promote the metastasis of esophageal squamous cell carcinoma (ESCC). Methods CAFs were collected from tumor tissues, and non-cancer associated fibroblasts (NFs) were obtained from adjacent normal tissues at least 5 cm away from the tumor. Exosomes (CAFs-Exo and NFs-Exo) were isolated from conditioned media collected from CAFs or NFs. CAFs-Exo and NFs-Exo were incubated with human ESCC cell line TE-1 for 24 hours, and CCK-8 was used to determine the cell proliferation ability. Scratch test and Transwell test were performed to determine the cell migration and invasion ability. TE-1 cells were divided into the following two groups: NC group and KD group. The NC group and KD group were transfected with control siRNAs or siRNAs targeting HOTAIR respectively. The effects of HOTAIR knock-down on cell proliferation, migration, invasion and glycolysis were determined. Results CAFs-Exo promoted the proliferation of TE-1 cells more significantly than NFs-Exo. Compared with NFs-Exo group, the migration and invasion ability of TE-1 cells treated with CAFs-Exo were improved significantly. In addition, CAFs-Exo treatment inhibited the expression of E-cadherin and enhanced the expression of N-cadherin. The expression of HOTAIR in CAFs was significantly higher than that in NFs. Compared with NFs-Exo, the expression level of HOTAIR in CAFs-Exo increased significantly. Compared with NC group, the proliferation, migration and invasion of TE-1 cells in KD group decreased significantly. Compared with NC group, hexokinase 2 (HK2), extracellular acidification rate (ECAR) and ATP/ADP ratio of TE-1 cells in KD group decreased significantly. Conclusion HOTAIR, an exosome derived from CAFs, may be involved in metastasis and EMT by regulating glycolysis in ESCC cells.
Humans
;
RNA, Long Noncoding/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Esophageal Squamous Cell Carcinoma
;
Exosomes/genetics*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Glycolysis/genetics*
;
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Cadherins/genetics*
7.Sialyltransferase ST3GAL1 promotes malignant progression in glioma.
Zihao ZHAO ; Wenjing ZHENG ; Lingling ZHANG ; Wenjie SONG ; Tao WANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):308-317
Objective To investigate the clinical relevance and diagnostic or prognostic value of ST3β-galactoside α-2, 3-sialyltransferase 1 (ST3GAL1) in glioma and to confirm its role in promoting malignant phenotypes. Methods Using data from The Cancer Genome Atlas (TCGA) database, we analyzed the correlation between ST3GAL1 expression levels in glioma and clinical parameters to evaluate its diagnostic and prognostic value. The impact of ST3GAL1 on malignant phenotypes of glioma cells-including proliferation, cell cycle progression, apoptosis, and invasion was further validated through ST3GAL1 knockdown experiments. Results The expression level of ST3GAL1 was significantly higher in glioma tissues compared to healthy brain tissues and showed a strong correlation with clinical characteristics of glioma patients. Survival analysis and receiver operating characteristic (ROC) curve demonstrated that ST3GAL1 could serve as a potential diagnostic and prognostic biomarker for glioma. Knockdown of ST3GAL1 suppressed proliferation, invasion, and migration capabilities of glioma cell lines, and induced G1-phase cell cycle arrest. Conclusion ST3GAL1 promotes malignant phenotypes in glioma and plays a critical role in its malignant progression, suggesting its potential as a biomarker for glioma diagnosis and prognosis.
Humans
;
Sialyltransferases/metabolism*
;
Glioma/diagnosis*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Brain Neoplasms/enzymology*
;
beta-Galactoside alpha-2,3-Sialyltransferase
;
Disease Progression
;
Prognosis
;
Cell Movement/genetics*
;
Apoptosis/genetics*
;
Male
;
Female
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/metabolism*
;
Middle Aged
8.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
9.The expression characteristics of TXN in pan cancer and its impact on tumor immunity and prognosis.
Annan SUN ; Luna SUN ; Hao WU ; Pu LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):706-716
Objective TXN is a thioredoxin (TXN) that participates in many redox reactions and plays a crucial role in various signaling pathways. However, the role of TXN in many cancers is still unclear. The objective of this study is to investigate and visualize the diagnostic, prognostic, and immunological implications of TXN expression across various cancer types. Methods The clinical data were downloaded from the cancer genome mapping project(TCGA) database to analyze the expression level of TXN in pan cancer, and the expression level was preliminarily verified by human protein mapping (HPA)(https://www.proteinatlas.org/)database. The ESTIMATE algorithm and CIBERSORT algorithm were applied to calculate the correlation between TXN expression and immune cell infiltration. The correlation between TXN and microsatellite instability (MSI) and tumor mutation burden (TMB) was analyzed using Spearman method. Gene Set Enrichment Analysis (GSEA) is used for gene biology functional analysis and sensitivity analysis of genes to pan cancer therapeutic drugs. Results TXN is highly expressed in most malignant tumors. The high expression of TXN is associated with overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression free interval (PFI) in various cancers. Moreover, TXN expression is associated with TMB, MSI, tumor microenvironment, chemotherapy sensitivity and so on. Conclusion TXN may become a potential prognostic biomarker in pan cancer, providing strong theoretical basis for future tumor diagnosis and prognosis judgment. The retinoic acid-inducible gene-I (RIG-I)-like receptor signaling pathway, Toll-like receptor (TLR) signaling pathway, and nucleotide binding oligomerization domain (NOD)-like receptor signaling pathway may be crucial pathways through which TXN influences tumor immunity.
Humans
;
Prognosis
;
Neoplasms/diagnosis*
;
Thioredoxins/metabolism*
;
Microsatellite Instability
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/genetics*
;
Mutation
;
Tumor Microenvironment
10.Effects of lncRNA DHRS4-AS1 on proliferation, invasion, migration, and apoptosis of thyroid cancer cells by regulating the miR-221-3p/SOCS3 signaling axis.
Hui WANG ; Yu GUO ; Peipei ZHANG ; Haoyu YANG ; Chuntao TIAN ; Mingming JIN
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):798-805
Objective To explore the influences of long-chain noncoding RNA DHRS4-AS1 (lncRNA DHRS4-AS1) on the proliferation, invasion, migration, and apoptosis of thyroid cancer (TC) cells by regulating the microRNA-221-3p (miR-221-3p)/suppressor of cytokine signaling 3 (SOCS3) signaling axis. Methods Quantitative real-time PCR (qRT-PCR) was applied to detect the expression of lncRNA DHRS4-AS1, miR-221-3p, and SOCS3 mRNA in TC cell lines, and the optimal cell line was selected for subsequent experiments. FTC-133 cells were divided into five groups: control group, pcDNA-NC group, DHRS4-AS1 group, DHRS4-AS1 combined with agomir NC group, and DHRS4-AS1 combined with miR-221-3p-agomir group. Transfection efficiency was assessed using qRT-PCR. Dual luciferase reporter assays were applied to verify the targeting interaction between lncRNA DHRS4-AS1, SOCS3, and miR-221-3p. Western blot analysis was used to detect the expression of SOCS3 in FTC-133 cells. EdU method was used to measure cell proliferation. Flow cytometry was applied to measure the apoptosis of FTC-133 cells. Scratch experiment was applied to measure the migration of FTC-133 cells. Transwell chamber was applied to detect the invasion of FTC-133 cells. Nude mouse transplantation tumor experiment was used to observe the effect of lncRNA DHRS4-AS1 on the growth of TC transplantation tumors. Results Dual luciferase reporter assays showed a targeting relationship between lncRNA DHRS4-AS1, miR-221-3p, and SOCS3. LncRNA DHRS4-AS1 and SOCS3 were downregulated and miR-221-3p was upregulated in FTC-133 cells. Overexpression of lncRNA DHRS4-AS1 inhibited proliferation, migration, and invasion of FTC-133 cells, while inducing apoptosis. Conversely, miR-221-3p overexpression reversed these inhibitory effects, and suppressed the apoptosis. Nude mouse transplantation experiment observed that overexpression of lncRNA DHRS4-AS1 resulted in a decrease in tumor tissue quality and volume, and a decrease in miR-221-3p expression and an increase in SOCS3 expression. Conclusion LncRNA DHRS4-AS1 is downregulated in FTC-133 cells. Overexpression of lncRNA DHRS4-AS1 can inhibit the proliferation, invasion, and migration of TC cells and induce apoptosis by regulating the miR-221-3p/SOCS3 signaling axis.
MicroRNAs/metabolism*
;
Suppressor of Cytokine Signaling 3 Protein/metabolism*
;
Humans
;
RNA, Long Noncoding/metabolism*
;
Apoptosis/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Thyroid Neoplasms/physiopathology*
;
Animals
;
Signal Transduction/genetics*
;
Cell Line, Tumor
;
Mice, Nude
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Mice
;
Mice, Inbred BALB C

Result Analysis
Print
Save
E-mail