1.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
2.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
3.Transcriptomic analysis of key genes involved in sex differences in intellectual development.
Jia-Wei ZHANG ; Xiao-Li ZHENG ; Hai-Qian ZHOU ; Zhen ZHU ; Wei HAN ; Dong-Min YIN
Acta Physiologica Sinica 2025;77(2):211-221
Intelligence encompasses various abilities, including logical reasoning, comprehension, self-awareness, learning, planning, creativity, and problem-solving. Extensive research and practical experience suggest that there are sex differences in intellectual development, with females typically maturing earlier than males. However, the key genes and molecular network mechanisms underlying these sex differences in intellectual development remain unclear. To date, Genome-Wide Association Studies (GWAS) have identified 507 genes that are significantly associated with intelligence. This study first analyzed RNA sequencing data from different stages of brain development (from BrainSpan), revealing that during the late embryonic stage, the average expression levels of intelligence-related genes are higher in males than in females, while the opposite is observed during puberty. This study further constructed interaction networks of intelligence-related genes with sex-differential expression in the brain, including the prenatal male network (HELP-M: intelligence genes with higher expression levels in prenatal males) and the pubertal female network (HELP-F: intelligence genes with higher expression levels in pubertal females). The findings indicate that the key genes in both networks are Ep300 and Ctnnb1. Specifically, Ep300 regulates the transcription of 53 genes in both HELP-M and HELP-F, while Ctnnb1 regulates the transcription of 45 genes. Ctnnb1 plays a more prominent role in HELP-M, while Ep300 is more crucial in HELP-F. Finally, this study conducted sequencing validation on rats at different developmental stages, and the results indicated that in the prefrontal cortex of female rats during adolescence, the expression levels of the intelligence genes in HELP-F, as well as key genes Ep300 and Ctnnb1, were higher than those in male rats. These genes were also involved in neurodevelopment-related biological processes. The findings reveal a sex-differentiated intelligence gene network and its key genes, which exhibit varying expression levels during the neurodevelopmental process.
Female
;
Intelligence/physiology*
;
Male
;
Sex Characteristics
;
Animals
;
Brain/growth & development*
;
E1A-Associated p300 Protein/physiology*
;
beta Catenin/physiology*
;
Transcriptome
;
Rats
;
Gene Expression Profiling
;
Genome-Wide Association Study
4.Identification of Lonicera japonica TPS gene family and expression analysis under aphid damage.
Gang WANG ; Yuan CUI ; Qi-Dong LI ; Lu-Yao HUANG ; Zhen-Hua LIU ; Jia LI
China Journal of Chinese Materia Medica 2025;50(8):2116-2129
This study explores the basic characteristics and potential functions of the terpene synthase(TPS) gene family members in Lonicera japonica. The L. japonica TPS(LjTPS) gene family was identified and functionally analyzed using bioinformatics methods. The results showed that a total of 70 members of the LjTPS gene family were identified in L. japonica, with protein lengths ranging from 130 to 1 437 amino acids. Most of these proteins were hydrophilic, and they were unevenly distributed across nine chromosomes. Phylogenetic analysis showed that the LjTPS gene family members were divided into six subfamilies, mainly consisting of members from the TPS-a, TPS-b, and TPS-e subfamilies. Promoter cis-acting element analysis showed that LjTPS members contained a large number of stress-responsive cis-acting elements. Aphid inoculation experiments showed that key enzyme genes in the MVA pathway for terpenoid backbone synthesis in L. japonica, such as HMGS, HMGR, MK, MPD, and the key enzyme gene in the DXP pathway, DXS, exhibited an initial increase followed by a decrease under aphid stress. The qRT-PCR analysis showed that the expression levels of the α-farnesene synthase genes LjTPS34 and LjTPS39 were down-regulated, while the expression levels of(E)-β-caryophyllene synthase genes LjTPS15 and LjTPS17 were up-regulated 12 h before aphid feeding, then began to decline. Farnesyl pyrophosphate synthase(FPS), which interacted with these genes, also displayed a pattern of increasing followed by decreasing expression. The expression of linalool synthase genes LjTPS12 and LjTPS33 was significantly up-regulated after 72 h of aphid feeding(P<0.000 1), reaching 24.39 and 22.64 times the initial expression, respectively. This pattern was in close alignment with the trend of linalool content in L. japonica. This study provides a theoretical foundation for future research on the interaction between L. japonica and pests, as well as on the functional roles of the LjTPS gene family.
Animals
;
Aphids/physiology*
;
Alkyl and Aryl Transferases/chemistry*
;
Lonicera/parasitology*
;
Phylogeny
;
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Multigene Family
;
Terpenes/metabolism*
5.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
6.Mechanism by which KLF9 regulates IFN-β expression in macrophages.
Xiurui YAN ; Zhaoqing GUAN ; Jianli SONG ; Yaolin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):882-887
Objective To investigate the role and mechanism of the zinc finger protein Kruppel-like transcription factor 9 (KLF9) in the stimulation of type I interferon expression induced by herpes simplex virus type 1 (HSV-1) in macrophages. Methods Agarose Gel electrophoresis, quantitative real-time PCR (qRT-PCR) and western blot analyses were employed to detect the KLF9 relative expression in bone marrow-derived macrophages (BMDMs) from Klf9-/- (gKO) mice and wild-type (WT) mice. RNA-seq analysis was utilized to identify the potential targeted genes upon HSV-1 stimulation in BMDMs. ELISA was used to measure the potent of IFN-β in the supernatant of BMDMs derived from gKO and WT mice after HSV-1 stimulation. qRT-PCR analysis was employed to further confirm the changes of Ifnb1 and interferon-stimulated gene (ISG) such as interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), interferon-stimulated exonuclease gene 20 (Isg20), cholesterol 25-hydroxylase (Ch25h) and 2'-5' oligoadenylate synthetase-like 1 (Oasl1). Western blot was used to detect the expression of phosphorylated interferon regulatory factor-3 (p-IRF3), IRF3, phosphorylated interferon regulatory factor-7 (p-IRF7), IRF7, phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) and NF-κB p65. CUT-Tag and ChIP-qPCR assay were utilized to confirm the binding region of KLF9 in Ifnb1. Results The KLF9 expression was significantly decreased in BMDMs from gKO mice compared with that from WT mice. The RNA-seq analysis showed that Klf9 deletion in BMDMs resulted in an impaired type I interferon signaling pathway. The qRT-PCR analysis revealed that Klf9 deletion in BMDMs led to a significant decrease of Ifnb1 and ISG such as Ifit1, Ch25h and Oasl1 except Isg20. Moreover, ELISA revealed that Klf9 knockout in BMDMs resulted in a significant decrease of IFN-β secreted from BMDMs. Mechanistically, KLF9 directly binds to the promoter of Ifnb1. Conclusion KLF9 is essential for macrophages to resist HSV-1 infection.
Animals
;
Kruppel-Like Transcription Factors/physiology*
;
Interferon-beta/metabolism*
;
Macrophages/virology*
;
Mice
;
Herpesvirus 1, Human/physiology*
;
Mice, Knockout
;
Signal Transduction
;
Mice, Inbred C57BL
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Regulatory Factor-7/genetics*
;
Gene Expression Regulation
7.Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells.
Cai-Mei HE ; Dong ZHANG ; Zuping HE
Asian Journal of Andrology 2025;27(1):4-12
Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Humans
;
Male
;
Signal Transduction/physiology*
;
Apoptosis/physiology*
;
Spermatogenesis/physiology*
;
Cell Differentiation
;
Adult Germline Stem Cells/physiology*
;
Spermatogonia/cytology*
;
Gene Expression Regulation
;
Animals
;
Infertility, Male/genetics*
;
Cell Self Renewal/genetics*
8.Expression of GATA1 in bronchial asthma and its effect on the transcription regulation of the ORMDL3 gene.
Hu CHEN ; Jiao-Jiao LI ; Yue YUAN ; Rui JIN
Chinese Journal of Contemporary Pediatrics 2025;27(2):212-218
OBJECTIVES:
To study the expression of the transcription factor GATA1 in bronchial asthma (referred to as asthma) and its effect on the expression level of the asthma susceptibility gene orosomucoid 1-like protein 3 (ORMDL3), along with the underlying molecular mechanisms.
METHODS:
The study included 28 cases of moderate asthma, 46 cases of severe asthma, and 12 normal controls from the Gene Expression Omnibus (GEO) database. The mRNA expression levels of GATA1 and ORMDL3 were analyzed among the asthma patients and the normal controls, including their correlation. The pGL-185/58 plasmid was co-transfected with GATA1 gene siRNA (si-GATA1 group) and siRNA negative control (si-control group) into BEAS-2B cells. Bioinformatics methods were used to predict GATA1 binding sites in the promoter region of the ORMDL3 gene. The dual-luciferase reporter gene system was employed to assess the promoter activity of ORMDL3, while real-time quantitative PCR and Western blotting were used to measure the mRNA and protein expression levels of GATA1 and ORMDL3. Chromatin immunoprecipitation (ChIP) assays were conducted to determine whether GATA1 binds to the promoter region of ORMDL3.
RESULTS:
The expression levels of GATA1 and ORMDL3 mRNA were significantly higher in the severe asthma group compared to the normal control group (P<0.001). Positive correlations were observed between GATA1 mRNA and ORMDL3 mRNA expression levels in both the moderate and severe asthma groups (r=0.636 and 0.341, respectively; P<0.05). In BEAS-2B cells, the dual-luciferase reporter assay revealed that ORMDL3 promoter luciferase activity, as well as ORMDL3 mRNA and protein expression levels, were lower in the si-GATA1 group compared to the si-control group (P<0.05). ChIP assay results demonstrated that GATA1 could bind to the promoter region of ORMDL3.
CONCLUSIONS
The expression of GATA1 is increased in asthma patients, which may regulate the promoter activity and expression of the asthma susceptibility gene ORMDL3.
Humans
;
Asthma/etiology*
;
GATA1 Transcription Factor/analysis*
;
Membrane Proteins/physiology*
;
Male
;
Female
;
Promoter Regions, Genetic
;
Child
;
Transcription, Genetic
;
Gene Expression Regulation
;
Adolescent
;
RNA, Messenger/analysis*
9.Effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
Journal of Central South University(Medical Sciences) 2025;50(1):1-10
OBJECTIVES:
Ovarian cancer is a common gynecologic malignancy, with poor prognosis in advanced stages. This study aimed to identify differentially expressed long noncoding RNA (lncRNA) associated with ovarian cancer prognosis and to explore the effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
METHODS:
Ovarian cancer-related lncRNA datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed and prognostically relevant tumor-suppressive lncRNAs were screened using lncRNA sequencing combined with clinical data. Reverse transcription PCR (RT-PCR) was used to detect the expression of lncRNA RP11-499E18.1 in ovarian cancer tissues, adjacent normal tissues, the IOSE80 normal ovarian epithelial cell line, and various ovarian cancer cell lines. Fluorescence in situ hybridization (FISH) was performed to determine its subcellular localization. Ovarian cancer cell lines CaOV3 and SKOV3 were divided into 3 groups: a negative control (NC) group, a knockdown (si-RP11-499E18.1) group, and a overexpression (pcDNA-RP11-499E18.1) group. Methyl thiazolyl tetrazolium (MTT) and Transwell assays were used to assess the effects of lncRNA RP11-499E18.1 on cell proliferation and migration. Western blotting was used to evaluate its effect on epithelial-mesenchymal transition (EMT)-related molecules. BALB/c nude mice were injected with CaOV3 cells transfected with pcDNA-RP11-499E18.1 (experimental group) or empty vector (control group), and tumor growth was monitored. Immunohistochemistry was used to assess the expression of Caspase 3 and Ki67 in tumor tissues.
RESULTS:
LncRNA sequencing identified RP11-499E18.1 as a differentially expressed and associated with prognosis. GEO data analysis showed that low RP11-499E18.1 expression was correlated with shorter overall and progression-free survival (both P<0.05). Its expression was significantly lower in ovarian cancer tissues and cell lines compared to normal controls (P<0.05 or P<0.001), and it was localized in both the nucleus and cytoplasm. In CaOV3 and SKOV3 cells, proliferation rates increased significantly in the si-RP11-499E18.1 group and decreased in the pcDNA-RP11-499E18.1 group (P<0.05 or P<0.001). Cell migration was enhanced in the si-RP11-499E18.1 group and suppressed in the pcDNA-RP11-499E18.1 group. Overexpression increased E-cadherin and decreased vimentin expression, while knockdown had the opposite effect. Tumor volume in the mouse model was significantly smaller in the experimental group (P<0.001), with increased Caspase 3 and decreased Ki67 expression in tumor tissues (both P<0.05).
CONCLUSIONS
LncRNA RP11-499E18.1 inhibits proliferation, migration, and EMT of ovarian cancer cells, and its low expression is associated with poor prognosis.
Female
;
Humans
;
RNA, Long Noncoding/physiology*
;
Ovarian Neoplasms/pathology*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Mice, Nude
;
Cell Proliferation
;
Prognosis
;
Mice, Inbred BALB C
;
Gene Expression Regulation, Neoplastic
;
Cell Movement
;
Epithelial-Mesenchymal Transition
10.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic

Result Analysis
Print
Save
E-mail