1.Isolated coronary arteritis secondary to Behçet’s disease: a case report
Yang ZHANG ; Lei XU ; Xinying HU ; Hao JIANG ; Feng ZHANG ; Junbo GE
Chinese Journal of Clinical Medicine 2025;32(2):300-305
A 36-year-old male patient presented with repeated myocardial infarction. Despite regular dual-antiplatelet therapy and intensive lipid-lowering therapy, he still experienced restenosis after coronary stent implantation. He then transferred to the Zhongshan Hospital, Fudan University. According to the disease history, combined with coronary artery inflammation observed by PET/CT and effective anti-inflammatory treatment, he was finally diagnosed with Behçet’s disease (BD) combined with isolated coronary arteritis. BD has been included in the Chinese Second Catalog of Rare Diseases, and the disease that only involves the coronary arteries is even rarer, which makes it very easy to misdiagnose and underdiagnosis in clinical practice. Strengthening the understanding of the complex clinical phenotypes of various vasculitis, attaching importance to multidisciplinary consultation, and dynamically following up are of great value for the early diagnosis of this disease.
2.EZH2 protein expression in predicting malignant transformation of oral leukoplakia: a prospective cohort study
MEI Nianrou ; LIU Limin ; YANG Jingwen ; XU Siming ; LI Chenxi ; GE Shuyun ; ZHOU Haiwen
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(10):862-872
Objective:
To investigate the predictive value of EZH2 expression for malignant transformation in oral leukoplakia (OLK) and to provide a reference for clinical practice.
Methods:
This study was approved by the institutional ethics committee, and informed consent was obtained from all participants. A total of 114 patients diagnosed with OLK by pathological examination and treated at our hospital between November 2020 and July 2022 were initially enrolled. After excluding those with incomplete data or follow-up, 105 participants were included in the final analysis, comprising 14 in the high EZH2 expression group and 91 in the low EZH2 expression group. Histopathological examination of oral mucosa and immunohistochemical detection of EZH2 protein expression were performed. The follow-up period was 30 months; participants were followed until malignant transformation occurred or until the end of follow-up, at which point they were withdrawn from the study. The exposure factor was the level of EZH2 protein expression, and the outcome was the malignant transformation rate of OLK. Differences in EZH2 expression levels and transformation outcomes were analyzed.
Results:
There were no statistically significant differences between the high and low EZH2 expression groups in terms of age, sex, history of systemic disease, lifestyle habits, psychological status, diet, and sleep conditions (P > 0.05). Lesions in the high EZH2 expression group were mainly located on the ventral tongue, while in the low EZH2 expression group, they were more commonly found on the dorsal tongue and buccal mucosa. The malignant transformation rate was 28.6% (4/14) in the high expression group and 8.8% (8/91) in the low expression group; these differences were not statistically significant (P=0.053). In univariate Cox regression analysis, the risk of malignant transformation in the high EZH2 expression group was 3.647 times that of the low EZH2 expression group (HR = 3.647, 95% CI: 1.097-12.120, P<0.05). Kaplan-Meier survival analysis showed that over the 30-month follow-up period, the cancer-free survival rate in the high EZH2 expression group was 19.8% lower than in the low expression group, and the difference was statistically significant (P<0.05). In multivariate Cox regression analysis, only moderate and severe epithelial dysplasia were identified as independent risk factors for malignant transformation. The risk of malignant transformation in the moderate and severe dysplasia groups was 10.695 and 13.623 times higher, respectively, than in the mild dysplasia group (HR = 10.695, 95% CI: 2.270-50.396, P<0.05; HR=13.623, 95% CI: 1.918-96.774, P<0.05). EZH2 high expression was not an independent risk factor in the multivariate model (HR= 2.528, 95% CI: 0.752-8.500, P = 0.134).
Conclusion
High EZH2 protein expression is a risk factor for the malignant transformation of OLK but does not have independent predictive value.
3.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
4.A practice guideline for therapeutic drug monitoring of mycophenolic acid for solid organ transplants.
Shuang LIU ; Hongsheng CHEN ; Zaiwei SONG ; Qi GUO ; Xianglin ZHANG ; Bingyi SHI ; Suodi ZHAI ; Lingli ZHANG ; Liyan MIAO ; Liyan CUI ; Xiao CHEN ; Yalin DONG ; Weihong GE ; Xiaofei HOU ; Ling JIANG ; Long LIU ; Lihong LIU ; Maobai LIU ; Tao LIN ; Xiaoyang LU ; Lulin MA ; Changxi WANG ; Jianyong WU ; Wei WANG ; Zhuo WANG ; Ting XU ; Wujun XUE ; Bikui ZHANG ; Guanren ZHAO ; Jun ZHANG ; Limei ZHAO ; Qingchun ZHAO ; Xiaojian ZHANG ; Yi ZHANG ; Yu ZHANG ; Rongsheng ZHAO
Journal of Zhejiang University. Science. B 2025;26(9):897-914
Mycophenolic acid (MPA), the active moiety of both mycophenolate mofetil (MMF) and enteric-coated mycophenolate sodium (EC-MPS), serves as a primary immunosuppressant for maintaining solid organ transplants. Therapeutic drug monitoring (TDM) enhances treatment outcomes through tailored approaches. This study aimed to develop an evidence-based guideline for MPA TDM, facilitating its rational application in clinical settings. The guideline plan was drawn from the Institute of Medicine and World Health Organization (WHO) guidelines. Using the Delphi method, clinical questions and outcome indicators were generated. Systematic reviews, Grading of Recommendations Assessment, Development, and Evaluation (GRADE) evidence quality evaluations, expert opinions, and patient values guided evidence-based suggestions for the guideline. External reviews further refined the recommendations. The guideline for the TDM of MPA (IPGRP-2020CN099) consists of four sections and 16 recommendations encompassing target populations, monitoring strategies, dosage regimens, and influencing factors. High-risk populations, timing of TDM, area under the curve (AUC) versus trough concentration (C0), target concentration ranges, monitoring frequency, and analytical methods are addressed. Formulation-specific recommendations, initial dosage regimens, populations with unique considerations, pharmacokinetic-informed dosing, body weight factors, pharmacogenetics, and drug-drug interactions are covered. The evidence-based guideline offers a comprehensive recommendation for solid organ transplant recipients undergoing MPA therapy, promoting standardization of MPA TDM, and enhancing treatment efficacy and safety.
Mycophenolic Acid/administration & dosage*
;
Drug Monitoring/methods*
;
Humans
;
Organ Transplantation
;
Immunosuppressive Agents/administration & dosage*
;
Delphi Technique
5.Discovery of a novel AhR-CYP1A1 axis activator for mitigating inflammatory diseases using an in situ functional imaging assay.
Feng ZHANG ; Bei ZHAO ; Yufan FAN ; Lanhui QIN ; Jinhui SHI ; Lin CHEN ; Leizhi XU ; Xudong JIN ; Mengru SUN ; Hongping DENG ; Hairong ZENG ; Zhangping XIAO ; Xin YANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(1):508-525
The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating many physiological processes. Activating the AhR-CYP1A1 axis has emerged as a novel therapeutic strategy against various inflammatory diseases. Here, a practical in situ cell-based fluorometric assay was constructed to screen AhR-CYP1A1 axis modulators, via functional sensing of CYP1A1 activities in live cells. Firstly, a cell-permeable, isoform-specific enzyme-activable fluorogenic substrate for CYP1A1 was rationally constructed for in-situ visualizing the dynamic changes of CYP1A1 function in living systems, which was subsequently used for discovering the efficacious modulators of the AhR-CYP1A1 axis. Following screening of a compound library, LAC-7 was identified as an efficacious activator of the AhR-CYP1A1 axis, which dose-dependently up-regulated the expression levels of both CYP1A1 and AhR in multiple cell lines. LAC-7 also suppressed macrophage M1 polarization and reduced the levels of inflammatory factors in LPS-induced bone marrow-derived macrophages. Animal tests showed that LAC-7 could significantly mitigate DSS-induced ulcerative colitis and LPS-induced acute lung injury in mice, and markedly reduced the levels of multiple inflammatory factors. Collectively, an optimized fluorometric cell-based assay was devised for in situ functional imaging of CYP1A1 activities in living systems, which strongly facilitated the discovery of efficacious modulators of the AhR-CYP1A1 axis as novel anti-inflammatory agents.
6.Discovery and mechanism verification of first-in-class hydrophobic tagging-based degraders of HBV core protein.
Shujing XU ; Ya WANG ; Dazhou SHI ; Shuo WANG ; Lijun QIAO ; Ge YANG ; Yang ZHOU ; Xinyong LIU ; Shuo WU ; Yuhuan LI ; Peng ZHAN
Acta Pharmaceutica Sinica B 2025;15(4):2170-2196
Interfering hepatitis B virus (HBV) capsid assembly holds promise as a therapeutic approach for chronic hepatitis B (CHB). Novel anti-HBV agents are urgently needed to overcome drug resistance challenges, with targeted protein degradation (TPD) emerging as a hopeful strategy. Herein, we report the first degradation of HBV core protein (HBC), a multifunctional structural protein, using small-molecule degraders developed by hydrophobic tagging (HyT) technology. Structure-activity relationship (SAR) analysis identified compound HyT-S7, featuring an adamantyl group, exhibiting potent inhibitory activity (EC50 = 0.46 μmol/L, HepAD38 cells) and degradation ability (DC50 = 3.02 ± 0.54 μmol/L) in a dose- and time-dependent manner. Mechanistic studies demonstrated that the autophagy-lysosome pathway was a potential driver of HyT-S7-induced HBC degradation. Remarkably, HyT-S7 effectively degraded 11 drug-resistant mutants, including highly resistant strains P25G and T33N, to Phase III drug GLS4. Furthermore, cellular thermal shift assay, surface plasmon resonance assay, and molecular dynamics simulations revealed the precise mode of HyT-S7 binding to HBC with the adamantyl group potentially mimicking protein misfolding to facilitate HBC degradation. This first proof-of-concept study highlights the potential of HyT-mediated TPD in HBC as a promising avenue for discovering novel HBV and other antiviral agents with favorable drug resistance profiles.
7.Upregulation of NR2A in Glutamatergic VTA Neurons Contributes to Chronic Visceral Pain in Male Mice.
Meng-Ge LI ; Shu-Ting QU ; Yang YU ; Zhenhua XU ; Fu-Chao ZHANG ; Yong-Chang LI ; Rong GAO ; Guang-Yin XU
Neuroscience Bulletin 2025;41(12):2113-2126
Chronic visceral pain is a persistent and debilitating condition arising from dysfunction or sensitization of the visceral organs and their associated nervous pathways. Increasing evidence suggests that imbalances in central nervous system function play an essential role in the progression of visceral pain, but the exact mechanisms underlying the neural circuitry and molecular targets remain largely unexplored. In the present study, the ventral tegmental area (VTA) was shown to mediate visceral pain in mice. Visceral pain stimulation increased c-Fos expression and Ca2+ activity of glutamatergic VTA neurons, and optogenetic modulation of glutamatergic VTA neurons altered visceral pain. In particular, the upregulation of NMDA receptor 2A (NR2A) subunits within the VTA resulted in visceral pain in mice. Administration of a selective NR2A inhibitor decreased the number of visceral pain-induced c-Fos positive neurons and attenuated visceral pain. Pharmacology combined with chemogenetics further demonstrated that glutamatergic VTA neurons regulated visceral pain behaviors based on NR2A. In summary, our findings demonstrated that the upregulation of NR2A in glutamatergic VTA neurons plays a critical role in visceral pain. These insights provide a foundation for further comprehension of the neural circuits and molecular targets involved in chronic visceral pain and may pave the way for targeted therapies in chronic visceral pain.
Animals
;
Male
;
Visceral Pain/metabolism*
;
Up-Regulation/physiology*
;
Ventral Tegmental Area/metabolism*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Neurons/drug effects*
;
Mice, Inbred C57BL
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Chronic Pain/metabolism*
;
Glutamic Acid/metabolism*
8.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
9.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
10.RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing.
Haoxian ZHOU ; Shu WU ; Bin LI ; Rongjinlei ZHANG ; Ying ZOU ; Mibu CAO ; Anhua XU ; Kewei ZHENG ; Qinghua ZHOU ; Jia WANG ; Jinping ZHENG ; Jianhua YANG ; Yuanlong GE ; Zhanyi LIN ; Zhenyu JU
Protein & Cell 2025;16(11):953-967
Loss of protein homeostasis is a hallmark of cellular senescence, and ribosome pausing plays a crucial role in the collapse of proteostasis. However, our understanding of ribosome pausing in senescent cells remains limited. In this study, we utilized ribosome profiling and G-quadruplex RNA immunoprecipitation sequencing techniques to explore the impact of RNA G-quadruplex (rG4) on the translation efficiency in senescent cells. Our results revealed a reduction in the translation efficiency of rG4-rich genes in senescent cells and demonstrated that rG4 structures within coding sequence can impede translation both in vivo and in vitro. Moreover, we observed a significant increase in the abundance of rG4 structures in senescent cells, and the stabilization of the rG4 structures further exacerbated cellular senescence. Mechanistically, the RNA helicase DHX9 functions as a key regulator of rG4 abundance, and its reduced expression in senescent cells contributing to increased ribosome pausing. Additionally, we also observed an increased abundance of rG4, an imbalance in protein homeostasis, and reduced DHX9 expression in aged mice. In summary, our findings reveal a novel biological role for rG4 and DHX9 in the regulation of translation and proteostasis, which may have implications for delaying cellular senescence and the aging process.
G-Quadruplexes
;
Cellular Senescence
;
Ribosomes/genetics*
;
Humans
;
Animals
;
Mice
;
DEAD-box RNA Helicases/genetics*
;
Protein Biosynthesis
;
RNA/chemistry*
;
Neoplasm Proteins


Result Analysis
Print
Save
E-mail