1.Influence evaluation of pharmaceutical quality control on medication therapy management services by the ECHO model
Kun LIU ; Huanhuan JIANG ; Yushuang LI ; Yan HUANG ; Qianying ZHANG ; Dong CHEN ; Xiulin GU ; Jinhui FENG ; Zijian WANG ; Yunfei CHEN ; Yajuan QI ; Yanlei GE ; Aishuang FU
China Pharmacy 2025;36(9):1123-1128
OBJECTIVE To evaluate the influence of pharmaceutical quality control on the efficiency and outcomes of standardized medication therapy management (MTM) services for patients with coronary heart disease by using Economic, Clinical and Humanistic Outcomes (ECHO) model. METHODS This study collected case data of coronary heart disease patients who received MTM services during January-March 2023 (pre-quality control implementation group, n=96) and June-August 2023 (post-quality control implementation group, n=164). Using propensity score matching analysis, 80 patients were selected from each group. The study subsequently compared the economic, clinical, and humanistic outcome indicators of pharmaceutical services between the two matched groups. RESULTS There were no statistically significant differences in baseline data between the two groups after matching (P>0.05). Compared with pre-quality control implementation group, the daily treatment cost (16.26 yuan vs. 24.40 yuan, P<0.001), cost-effectiveness ratio [23.12 yuan/quality-adjusted life year (QALY) vs. 32.32 yuan/QALY, P<0.001], and the incidence of general adverse drug reactions (2.50% vs. 10.00%, P=0.049) of post-quality control implementation group were decreased significantly; the utility value of the EuroQol Five-Dimensional Questionnaire (0.74± 0.06 vs. 0.71±0.07, P=0.003), the reduction in the number of medication related problems (1.0 vs. 0.5, P<0.001), the medication adherence score ([ 6.32±0.48) points vs. (6.10±0.37) points, P=0.001], and the satisfaction score ([ 92.56±1.52) points vs. (91.95±1.56) points, P=0.013] all showed significant improvements. Neither group experienced serious adverse drug reactions. There was no statistically significant difference in the incidence of new adverse reactions between the two groups (1.25% vs. 3.75%, P=0.310). CONCLUSIONS Pharmaceutical quality control can improve the quality of pharmaceutical care, and the ECHO model can quantitatively evaluate the effect of MTM services, making pharmaceutical care better priced and more adaptable to social needs, thus being worthy of promotion.
2.Mechanisms of different yin nourishing and kidney tonifying methods on osteoclastysis pathway in ovariectomized rats
Xiaobin HUANG ; Jirong GE ; Shengqiang LI ; Lihua XIE ; Jingwen HUANG ; Yanyan HE ; Lipeng XUE
Chinese Journal of Tissue Engineering Research 2025;29(6):1214-1219
BACKGROUND:Liuwei Dihuang Wan takes"three tonifying and three reducing effects"as its compatibility feature to nourish yin and tonify the kidneys,while Zuogui Wan takes"seeking yin in yang"as its compatibility feature to nourish yin and tonify the kidneys by promoting yang.Both of them belong to the same method of nourishing yin and tonifying the kidneys,and have better curative effects at the symptomatic and cellular molecular levels. OBJECTIVE:To observe the effects of Liuwei Dihuang Wan and Zuogui Wan in bone metabolism,and to explore their mechanism of action in the osteoprotegerin(OPG)/receptor activator of nuclear factor-κB ligand(RANKL)osteoblastic pathway. METHODS:Thirty-two Sprague-Dawley rats were randomized into model,Liuwei Dihuang Wan,Zuogui Wan,and sham operation group,with eight rats in each group.Osteoporosis models were prepared using removal of both ovaries in the first three groups.Starting at 30 days postoperatively,rats in the Liuwei Dihuang Wan group were gavaged with Liuwei Dihuang Wan 1.125 g/kg/d;rats in the Zuoqui Wan group were gavaged with Zuogui Wan 2.25 g/kg/d;and rats in the sham operation group and the model group were gavaged with saline 10 mL/kg/d.After 12 weeks of gavage,the rat tibia was taken to measure bone mineral density.The serum levels of estrogen,bone alkaline phosphatase,and cAMP/cGMP were measured using ELISA,and the expression of OPG/RANKL in the femur was detected using western blot. RESULTS AND CONCLUSION:Compared with the sham operation group,the model group showed a decrease in bone mineral density and levels of estrogen and bone alkaline phosphatase(P<0.05)and an increase in cAMP/cGMP level(P<0.05).Compared with the model group,the Liuwei Dihuang Wan group and the Zuogui Wan group significantly increased bone mineral density(P<0.05)and bone alkaline phosphatase levels(P<0.05);the Zuogui Wan group significantly decreased cAMP/cGMP levels(P<0.05)and upregulated OPG expression(P<0.05);the Liuwei Dihuang Wan group upregulated OPG expression and downregulated RANKL expression(P<0.05);and both groups were unable to significantly increase estrogen levels(P>0.05).To conclude,Zuogui Wan,which seeks yin from yang,can effectively increase the expression of OPG but cannot downregulate the expression of RANKL.However,Liuwei Dihuang Wan,which has three tonifying and three reducing effects,can bidirectionally regulate the expression of OPG and RANKL.This result suggests that Liuwei Dihuang Wan can significantly inhibit osteoclastic function compared with Zuogui Wan,and further research is needed to verify this conclusion.
3.Metabolomics analysis of the lumbar spine after alendronate sodium intervention in ovariectomized rats with osteoporosis
Xinfei CHEN ; Yahui DAI ; Bingying XIE ; Xiaobin HUANG ; Huimin HUANG ; Jingwen HUANG ; Shengqiang LI ; Jirong GE
Chinese Journal of Tissue Engineering Research 2025;29(11):2277-2284
BACKGROUND:Studies have reported that alendronate intake significantly increases bone mineral density in patients with osteoporosis. OBJECTIVE:To analyze and compare the changes in metabolites before and after alendronate intervention in ovariectomized rats by chromatography-mass spectrometry,and to further explore the specific mechanism and target of alendronate in the treatment of osteoporosis. METHODS:A total of 36 female Sprague-Dawley rats were randomly divided into model group,alendronate sodium group and sham operation group.The osteoporosis model was established by ovariectomy in the first two groups.Four weeks after modeling,the rats in the alendronate group were intragastrically given alendronate sodium,while those in the sham operation group and model group were given equal volume of normal saline.After 12 weeks of continuous gavage,the metabolites of the lumbar spine were analyzed by chromatography-mass spectrometry,and the common differential metabolites were obtained,which were analyzed by bioinformatics such as Kyoto Gene and Genome Encyclopedia pathway. RESULTS AND CONCLUSION:Totally 17 different metabolites were obtained in the three groups.The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes showed that alendronate sodium could regulate unsaturated fatty acid biosynthesis,linoleic acid metabolism and other pathways to protect ovariectomized rats.These results indicate that alendronate sodium may exert its anti-osteoporosis effect by interfering with unsaturated fatty acid bioanabolism and linoleic acid metabolism,so as to achieve the purpose of preventing osteoporosis
4.The mechanism of SAP overexpression in alleviating periodontitis in mice
HUANG Yinyin ; LIANG Dongliang ; ZOU Yaokun ; HAN Jingru ; GE Qing ; LIU Xueyan ; GUO Yadong ; HUANG Xinli ; YANG Lan
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):619-630
Objective:
To investigate the mechanism by which serum amyloid P component (SAP) alleviates periodontitis in mice, providing an experimental basis to establish SAP as a novel therapeutic agent for periodontitis.
Methods:
Ethical approval was obtained from the Institutional Animal Ethics Committee. Periodontitis models were established in wild-type (WT) mice and SAP-transgenic (SAP-Tg) mice, divided into four groups: WT control (WT group), WT periodontitis (WT+P group), SAP-Tg control (Tg group), and SAP-Tg periodontitis (Tg+P group). On day 7, the mice were euthanized, and periodontal tissues, teeth, and alveolar bone were collected. SAP protein expression was detected by enzyme-linked immunosorbent assay (ELISA). Micro-CT and HE staining were used to measure alveolar bone resorption (distance from the cementoenamel junction to the alveolar bone crest). Tartrate-resistant acid phosphatase (TRAP) staining was performed to assess osteoclast number, and immunohistochemistry (IHC) was employed to evaluate macrophage infiltration. The expression levels of inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured by qRT-PCR. Oral microorganism composition was analyzed using 16S ribosomal RNA (16S rRNA) gene sequencing. Additionally, macrophages from WT and SAP-Tg mice were isolated to establish an in vitro inflammation model, divided into WT+LPS and Tg+LPS groups. The expression of macrophage polarization-related genes including inducible nitric oxide synthase (iNOS), CD86, CD163, and CD206) were assessed by qRT-PCR. After the induction of osteoclast differentiation, TRAP staining was performed.
Results:
ELISA results demonstrated that periodontal tissues from Tg+P group mice exhibited higher levels of SAP expression compared to the WT+P group. Micro-CT and HE staining analyses revealed that the Tg+P group showed reduced alveolar bone resorption, indicated by a shorter distance between the cementoenamel junction and alveolar bone crest, compared to the WT+P group. Furthermore, TRAP staining results indicated a decrease in osteoclast numbers in the Tg+P group compared to the WT+P group. IHC and qRT-PCR results indicated reduced macrophage infiltration and decreased expression of IL-1β, IL-6, and TNF-α in the Tg+P group. Oral microorganism sequencing showed no significant difference in periodontitis-associated pathogenic bacteria between WT+P and Tg+P groups. In vitro experiments demonstrated that compared to the WT+LPS group, the Tg+LPS group exhibited downregulated M1 macrophage markers (iNOS and CD86) and upregulated M2 macrophage markers (CD163 and CD206). TRAP staining confirmed fewer osteoclasts in the Tg+LPS group.
Conclusion
SAP overexpression effectively alleviates periodontitis severity in mice by inhibiting M1 macrophage polarization, reducing pro-inflammatory cytokine expression, and suppressing osteoclast differentiation, thereby attenuating alveolar bone resorption.
5.Temporal trend in mortality due to congenital heart disease in China from 2008 to 2021.
Youping TIAN ; Xiaojing HU ; Qing GU ; Miao YANG ; Pin JIA ; Xiaojing MA ; Xiaoling GE ; Quming ZHAO ; Fang LIU ; Ming YE ; Weili YAN ; Guoying HUANG
Chinese Medical Journal 2025;138(6):693-701
BACKGROUND:
Congenital heart disease (CHD) is a leading cause of birth defect-related mortality. However, more recent CHD mortality data for China are lacking. Additionally, limited studies have evaluated sex, rural-urban, and region-specific disparities of CHD mortality in China.
METHODS:
We designed a population-based study using data from the Dataset of National Mortality Surveillance in China between 2008 and 2021. We calculated age-adjusted CHD mortality using the sixth census data of China in 2010 as the standard population. We assessed the temporal trends in CHD mortality by age, sex, area, and region from 2008 to 2021 using the joinpoint regression model.
RESULTS:
From 2008 to 2021, 33,534 deaths were attributed to CHD. The period witnessed a two-fold decrease in the age-adjusted CHD mortality from 1.61 to 0.76 per 100,000 persons (average annual percent change [AAPC] = -5.90%). Females tended to have lower age-adjusted CHD mortality than males, but with a similar decline rate from 2008 to 2021 (females: AAPC = -6.15%; males: AAPC = -5.84%). Similar AAPC values were observed among people living in urban (AAPC = -6.64%) and rural (AAPC = -6.12%) areas. Eastern regions experienced a more pronounced decrease in the age-adjusted CHD mortality (AAPC = -7.86%) than central (AAPC = -5.83%) and western regions (AAPC = -3.71%) between 2008 and 2021. Approximately half of the deaths (46.19%) due to CHD occurred during infancy. The CHD mortality rates in 2021 were lower than those in 2008 for people aged 0-39 years, with the largest decrease observed among children aged 1-4 years (AAPC = -8.26%), followed by infants (AAPC = -7.01%).
CONCLUSIONS
CHD mortality in China has dramatically decreased from 2008 to 2021. The slower decrease in CHD mortality in the central and western regions than in the eastern regions suggested that public health policymakers should pay more attention to health resources and health education for central and western regions.
Humans
;
Heart Defects, Congenital/mortality*
;
Male
;
Female
;
China/epidemiology*
;
Infant
;
Child, Preschool
;
Adult
;
Child
;
Adolescent
;
Infant, Newborn
;
Middle Aged
;
Young Adult
;
Aged
;
Rural Population
6.Salvianolate injection ameliorates cardiomyopathy by regulating autophagic flux through miR-30a/becn1 axis in zebrafish.
Jianxuan LI ; Yang ZHANG ; Zhi ZUO ; Zhenzhong ZHANG ; Ying WANG ; Shufu CHANG ; Jia HUANG ; Yuxiang DAI ; Junbo GE
Chinese Medical Journal 2025;138(20):2604-2614
BACKGROUND:
Salvianolate is a compound mainly composed of salvia magnesium acetate, which is extracted from the Chinese herb Salvia miltiorrhiza . In recent years, salvianolate injection has been widely used in the treatment of cardiovascular diseases, but the mechanism of how it can alleviate cardiotoxicity remains unclear.
METHODS:
The cardiac injury model was constructed by treatment with doxorubicin (Dox) or azithromycin (Azi) in zebrafish larvae. Heart phenotype, heart rate, and cardiomyocyte apoptosis were observed in the study. RNA-sequencing (RNA-seq) analysis was used to explore the underlying mechanism of salvianolate treatment. Moreover, cardiomyocyte autophagy was assessed by in situ imaging. In addition, the miR-30a/becn1 axis regulation by salvianolate was further investigated.
RESULTS:
Salvianolate treatment reduced the proportion of pericardial edema, recovered heart rate, and inhibited cardiomyocyte apoptosis in Dox/Azi-administered zebrafish larvae. Mechanistically, salvianolate regulated the lysosomal pathway and promoted autophagic flux in zebrafish cardiomyocytes. The expression level of becn1 was increased in Dox-induced myocardial tissue injury after salvianolate administration; overexpression of becn1 in cardiomyocytes alleviated the Dox/Azi-induced cardiac injury and promoted autophagic flux in cardiomyocytes, while becn1 knockdown blocked the effects of salvianolate. In addition, miR-30a, negatively regulated by salvianolate, partially inhibited the cardiac amelioration of salvianolate by targeting becn1 directly.
CONCLUSION
This study has proved that salvianolate reduces cardiomyopathy by regulating autophagic flux through the miR-30a/becn1 axis in zebrafish and is a potential drug for adjunctive Dox/Azi therapy.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Autophagy/drug effects*
;
Myocytes, Cardiac/metabolism*
;
Cardiomyopathies/metabolism*
;
Beclin-1/genetics*
;
Apoptosis/drug effects*
;
Plant Extracts/therapeutic use*
;
Doxorubicin
7.Neutrophil membrane-coated PLGA nanoparticles promoting the repair of myocardial ischemia-reperfusion injury in mice
Jing CHEN ; Yanan SONG ; Zheyong HUANG ; Junbo GE
Chinese Journal of Clinical Medicine 2025;32(3):384-391
Objective To explore the role and related mechanism of neutrophil membrane-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Neu-NP) in cardiac repair after acute myocardial ischemia-reperfusion (MI/R) injury in mice. Methods The male C57 mouse model of acute MI/R injury was established and randomly divided into three groups: PBS control group (injection of 200 μL PBS), NP treatment group (injection of 0.5 mg/mL NP 200 μL), and Neu-NP treatment group (injection of 0.5 mg/mL Neu-NP 200 μL). Neutrophil membranes were extracted and fused with PLGA nanoparticles to construct biomimetic Neu-NP. The in vivo homing ability of Neu-NP was assessed using ex vivo imaging technology in the MI/R injury model, and the expression levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the myocardium were measured using enzyme linked immunosorbent assay one day and three days after administration. Echocardiography was used to determine cardiac function indicators of MI/R injured mice 28 days post-administration. Immunofluorescence staining was used to observe angiogenesis repair and inflammatory cell infiltration in mouse heart tissue. Results Neu-NP, engineered by integrating neutrophil membranes with nanoparticles, inherited surface receptors (TNF-αR and IL-6R) and functioned as decoys for inflammatory targeting. Compared with the PBS control group and NP treatment group, the secretion levels of TNF-α and IL-6 in the damaged myocardium of the Neu-NP treatment group were significantly decreased one and three days after administration (P<0.05); 28 days after administration, the cardiac ejection fraction in the Neu-NP treatment group was significantly higher than that in the other two groups (P<0.05). Immunofluorescence staining indicated a significant increase in the proportion of angiogenesis in the myocardial infarction area and a significant reduction in inflammation cell infiltration (P<0.05). Conclusions Neu-NP plays an important role in cardiac tissue repair after MI/R injury by alleviating inflammatory factors in the damaged area and promoting angiogenesis.
8.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
9.Biomarkers of hepatotoxicity in rats induced by aqueous extract of Dictamni Cortex based on urine metabolomics.
Hui-Juan SUN ; Rui GAO ; Meng-Meng ZHANG ; Ge-Yu DENG ; Lin HUANG ; Zhen-Dong ZHANG ; Yu WANG ; Fang LU ; Shu-Min LIU
China Journal of Chinese Materia Medica 2025;50(9):2526-2538
This paper aimed to use non-targeted urine metabolomics to reveal the potential biomarkers of toxicity in rats with hepatic injury induced by aqueous extracts of Dictamni Cortex(ADC). Forty-eight SD rats were randomly assigned to a blank group and high-dose, medium-dose, and low-dose ADC groups, with 12 rats in each group(half male and half female), and they were administered orally for four weeks. The hepatic injury in SD rats was assessed by body weight, liver weight/index, biochemical index, L-glutathione(GSH), malondialdehyde(MDA), and pathological alterations. The qPCR was utilized to determine the expression of metabolic enzymes in the liver and inflammatory factors. Differential metabolites were screened using principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), followed by a metabolic pathway analysis. The Mantel test was performed to assess differential metabolites and abnormally expressed biochemical indexes, obtaining potential biomarkers. The high-dose ADC group showed a decrease in body weight and an increase in liver weight and index, resulting in hepatic inflammatory cell infiltration and hepatic steatosis. In addition, this group showed elevated levels of MDA, cytochrome P450(CYP) 3A1, interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α), as well as lower levels of alanine transaminase(ALT) and GSH. A total of 76 differential metabolites were screened from the blank and high-dose ADC groups, which were mainly involved in the pentose phosphate pathway, tryptophan metabolism, purine metabolism, pentose and glucuronic acid interconversion, galactose metabolism, glutathione metabolism, and other pathways. The Mantel test identified biomarkers of hepatotoxicity induced by ADC in SD rats, including glycineamideribotide, dIDP, and galactosylglycerol. In summary, ADC induced hepatotoxicity by disrupting glucose metabolism, ferroptosis, purine metabolism, and other pathways in rats, and glycineamideribotide, dIDP, and galactosylglycerol could be employed as the biomarkers of its toxicity.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Biomarkers/metabolism*
;
Liver/metabolism*
;
Drugs, Chinese Herbal/adverse effects*
;
Female
;
Chemical and Drug Induced Liver Injury/metabolism*
;
Glutathione/metabolism*
;
Humans
10.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny


Result Analysis
Print
Save
E-mail