1.Anti-obesity and Gut Microbiota Modulation Effect of Astragalus Polysaccharides Combined with Berberine on High-Fat Diet-Fed Obese Mice.
Shi-Jun YUE ; Wen-Xiao WANG ; Lei ZHANG ; Juan LIU ; Wu-Wen FENG ; Huan GAO ; Yu-Ping TANG ; Dan YAN
Chinese journal of integrative medicine 2023;29(7):617-625
OBJECTIVE:
To investigate whether astragalus polysaccharides (APS) combined with berberine (BBR) can reduce high-fat diet (HFD)-induced obesity in mice.
METHODS:
Except for normal mice, 32 HFD-induced obese mice were randomized into HFD, APS (1,000 mg/kg APS), BBR (200 mg/kg BBR), and APS plus BBR (1,000 mg/kg APS plus 200 mg/kg BBR) groups, respectively. After 6-week treatment (once daily by gavage), the obesity phenotype and pharmacodynamic effects were evaluated by histopathological examination of epididymal fat, liver, and colon using hematoxylin-eosin staining and serum biochemical analyses by an automated chemistry analyzer. The feces were collected at the 12 th week, and taxonomic and functional profiles of gut microbiota were analyzed by 16S ribosomal ribonucleic acid (16S rRNA) sequencing.
RESULTS:
Compared with HFD group, the average body weight of APS plus BBR group was decreased (P<0.01), accompanied with the reduced fat accumulation, enhanced colonic integrity, insulin sensitivity and glucose homeostasis (P<0.05 or P<0.01). Importantly, APS combined with BBR treatment was more effective than APS or BBR alone in improving HFD-induced insulin resistance (P<0.05 or P<0.01). 16S rRNA sequence-based analysis of fecal samples demonstrated that APS combined with BBR treatment exhibited a better impact on HFD-induced gut microbiota dysbiosis, exclusively via the enriched abundances of Bacteroides, which corresponded to the large increase of predicted bacterial genes involved in carbohydrate metabolism.
CONCLUSION
APS combined with BBR may synergistically reduce obesity and modulate the gut microbiota in HFD-fed mice.
Mice
;
Animals
;
Diet, High-Fat
;
Berberine/therapeutic use*
;
Mice, Obese
;
RNA, Ribosomal, 16S/genetics*
;
Gastrointestinal Microbiome
;
Obesity/drug therapy*
;
Insulin Resistance
;
Mice, Inbred C57BL
2.A panel study on the effect of atmospheric PM2.5 exposure on the gut microbiome in healthy elderly people aged 60-69 years old.
En Min DING ; Jiao Nan WANG ; Fu Chang DENG ; Pei Jie SUN ; Chen Feng LI ; Chen Long LI ; Yu WANG ; Jian Long FANG ; Song TANG ; Xiao Ming SHI
Chinese Journal of Preventive Medicine 2023;57(7):1018-1025
Objective: To analyze the short-term effect of individual atmospheric PM2.5 exposure on the diversity, enterotype, and community structure of gut microbiome in healthy elderly people in Jinan, Shandong province. Methods: The present panel study recruited 76 healthy elderly people aged 60-69 years old in Dianliu Street, Lixia District, Jinan, Shandong Province, and followed them up five times from September 2018 to January 2019. The relevant information was collected by questionnaire, physical examination, precise monitoring of individual PM2.5 exposure, fecal sample collection and gut microbiome 16S rDNA sequencing. The Dirichlet multinomial mixtures (DMM) model was used to analyze the enterotype. Linear mixed effect model and generalized linear mixed effect model were used to analyze the effect of PM2.5 exposure on gut microbiome α diversity indices (Shannon, Simpson, Chao1, and ACE indices), enterotype and abundance of core species. Results: Each of the 76 subjects participated in at least two follow-up visits, resulting in a total of 352 person-visits. The age of 76 subjects was (65.0±2.8) years old with BMI (25.0±2.4) kg/m2. There were 38 males accounting for 50% of the subjects. People with an educational level of primary school or below accounted for 10.5% of the 76 subjects, and those with secondary school and junior college or above accounting for 71.1% and 18.4%. The individual PM2.5 exposure concentration of 76 subjects during the study period was (58.7±53.7) μg/m3. DMM model showed that the subjects could be divided into four enterotypes, which were mainly driven by Bacteroides, Faecalibacterium, Lachnospiraceae, Prevotellaceae, and Ruminococcaceae. Linear mixed effects model showed that different lag periods of PM2.5 exposure were significantly associated with a lower gut α diversity index (FDR<0.05 after correction). Further analysis showed that PM2.5 exposure was significantly associated with changes in the abundances of Firmicutes (Megamonas, Blautia, Streptococcus, etc.) and Bacteroidetes (Alistipes) (FDR<0.05 after correction). Conclusion: Short-term PM2.5 exposure is significantly associated with a decrease in gut microbiome diversity and changes in the abundance of several species of Firmicutes and Bacteroidetes in the elderly. It is necessary to further explore the underlying mechanisms between PM2.5 exposure and the gut microbiome, so as to provide a scientific basis for promoting the intestinal health of the elderly.
Aged
;
Humans
;
Male
;
Middle Aged
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Particulate Matter
;
RNA, Ribosomal, 16S/genetics*
;
Female
3.Changes of gut microflora in newly diagnosed IgA nephropathy patients and its correlation with clinical risk factors.
Journal of Peking University(Health Sciences) 2023;55(1):124-132
OBJECTIVE:
To investigate the gut microbiota in newly diagnosed IgA nephropathy patients with chronic kidney disease (CKD) stages 1-2 and the association between the gut microbiota and the clinical risk factors of IgA nephropathy.
METHODS:
Fresh fecal samples were collected from nineteen newly diagnosed IgA nephropathy patients with CKD stages 1-2 and fifteen age- and sex-matched healthy controls. Fecal bacterial DNA was extracted and microbiota composition were characterized using 16S ribosomal RNA (16S rRNA) high-throughput sequencing for the V3-V4 region. The Illumina Miseq platform was used to analyze the results of 16S rRNA high-throughput sequencing of fecal flora. At the same time, the clinical risk factors of IgA nephropathy patients were collected to investigate the association between the gut microbiota and the clinical risk factors.
RESULTS:
(1) At the phylum level, the abundance of Bacteroidetes was significantly reduced (P=0.046), and the abundance of Actinobacteria was significantly increased (P=0.001). At the genus level, the abundance of Escherichia-Shigella, Bifidobacte-rium, Dorea and others were significantly increased (P < 0.05). The abundance of Lachnospira, Coprococcus_2 and Sutterella was significantly reduced (P < 0.05). (2) There was no significant difference in the abundance of gut microbiota between the newly diagnosed IgA nephropathy patients and the healthy control group (P>0.05), but there were differences in the structure of the gut microbiota between the two groups. The results of LEfSe analysis showed that there were 16 differential bacteria in the newly diagnosed IgA nephropathy patients and healthy controls. Among them, the abundance of the newly diagnosed IgA nephropathy patients was increased in Enterobacteriales, Actinobacteria, Escherichia-Shigella, etc. The healthy control group was increased in Bacteroidetes and Lachnospira. (3) The result of redundancy analysis (RDA) showed that Bifidobacterium was positively correlated with serum IgA levels, 24-hour urinary protein levels and the presence of hypertension. Lachnoclostridium was positively correlated with the presence of hypertension. Escherichia-Shigella was positively correlated with urine red blood cells account. Bifidobacterium was positively correlated with the proliferation of capillaries. Faecalibacterium was positively correlated with cell/fibrocytic crescents. Ruminococcus_2 was positively correlated with mesangial cell proliferation, glomerular segmental sclerosis and renal tubular atrophy/interstitial fibrosis.
CONCLUSION
The gut microbiota in the newly diagnosed IgA nephropathy patients with CKD stages 1-2 is different from that of the healthy controls. Most importantly, some gut bacteria are related to the clinical risk factors of IgA nephropathy. Further research is needed to understand the potential role of these bacteria in IgA nephropathy.
Humans
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S/genetics*
;
Glomerulonephritis, IGA
;
Bacteria/genetics*
;
Risk Factors
;
Renal Insufficiency, Chronic
4.Application of emerging technologies for gut microbiome research.
Wit Thun KWA ; Saishreyas SUNDARAJOO ; Kai Yee TOH ; Jonathan LEE
Singapore medical journal 2023;64(1):45-52
Microbiome is associated with a wide range of diseases. The gut microbiome is also a dynamic reflection of health status, which can be modified, thus representing great potential to exploit the mechanisms that influence human physiology. Recent years have seen a dramatic rise in gut microbiome studies, which has been enabled by the rapidly evolving high-throughput sequencing methods (i.e. 16S rRNA sequencing and shotgun sequencing). As the emerging technologies for microbiome research continue to evolve (i.e. metatranscriptomics, metabolomics, culturomics, synthetic biology), microbiome research has moved beyond phylogenetic descriptions and towards mechanistic analyses. In this review, we highlight different approaches to study the microbiome, in particular, the current limitations and future promise of these techniques. This review aims to provide clinicians with a framework for studying the microbiome, as well as to accelerate the adoption of these techniques in clinical practice.
Humans
;
Gastrointestinal Microbiome
;
Phylogeny
;
RNA, Ribosomal, 16S/genetics*
;
Health Status
5.Gut microbial methionine impacts circadian clock gene expression and reactive oxygen species level in host gastrointestinal tract.
Xiaolin LIU ; Yue MA ; Ying YU ; Wenhui ZHANG ; Jingjing SHI ; Xuan ZHANG ; Min DAI ; Yuhan WANG ; Hao ZHANG ; Jiahe ZHANG ; Jianghua SHEN ; Faming ZHANG ; Moshi SONG ; Jun WANG
Protein & Cell 2023;14(4):309-313
6.Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice.
Ming-Min XU ; Yu GUO ; Ying CHEN ; Wei ZHANG ; Lu WANG ; Ying LI
Journal of Integrative Medicine 2023;21(4):397-406
OBJECTIVE:
Abnormalities in the gut microbiota and intestinal short-chain fatty acid (SCFA) levels are implicated in the pathogenesis of functional constipation (FC). Electro-acupuncture (EA) has been shown to improve constipation-related symptoms and rebalance the gut microbiota. However, it is currently unknown whether the gut microbiota is a key mechanistic target for EA or how EA promotes gut motility by regulating the gut microbiota and SCFAs. Therefore, we assessed the effects of EA in FC mice and pseudo-germfree (PGF) mice to address these questions.
METHODS:
Forty female Kunming mice were randomly separated into a normal control group (n = 8), an FC group (n = 8), an FC + EA group (n = 8), a PGF group (n = 8) and a PGF + EA group (n = 8). The FC group and FC + EA group were treated with diphenoxylate to establish the FC model; the PGF group and PGF + EA group were given an antibiotic cocktail to initiate the PGF model. After maintaining the model for 14 d, mice in the FC + EA and PGF + EA groups received EA stimulation at the ST25 and ST37 acupoints, once a day, 5 times per week, for 2 weeks. Fecal parameters and intestinal transit rate were calculated to assess the efficacy of EA on constipation and gastrointestinal motility. Colonic contents were used to quantify gut microbial diversity using 16S rRNA sequencing, and measure SCFA concentrations using gas chromatography-mass spectrometry.
RESULTS:
EA significantly shortened the first black stool defecation time (P < 0.05) and increased the intestinal transit rate (P < 0.01), and fecal pellet number (P < 0.05), wet weight (P < 0.05) and water content (P < 0.01) over 8 h, compared with the FC group, showing that EA promoted gut motility and alleviated constipation. However, EA treatment did not reverse slow-transit colonic motility in PGF mice (P > 0.05), demonstrating that the gut microbiota may play a mechanistic role in the EA treatment of constipation. In addition, EA treatment restored the Firmicutes to Bacteroidetes ratio and significantly increased butyric acid generation in FC mice (P < 0.05), most likely due to the upregulation of Staphylococcaceae microorganisms (P < 0.01).
CONCLUSION
EA-mediated resolution of constipation occurs through rebalancing the gut microbiota and promoting butyric acid generation. Please cite this article as: Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. J Integr Med. 2023; Epub ahead of print.
Mice
;
Female
;
Animals
;
Gastrointestinal Microbiome
;
Butyric Acid/pharmacology*
;
RNA, Ribosomal, 16S/genetics*
;
Constipation/therapy*
;
Acupuncture Therapy
;
Electroacupuncture/methods*
7.Effect of moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4) on immune function in healthy rats based on intestinal flora.
Jun-Hua ZHANG ; Si SHAN ; Mu-Chen WANG ; Ze-Han ZOU ; Hong-Ning LIU
Chinese Acupuncture & Moxibustion 2023;43(10):1157-1164
OBJECTIVE:
To observe the effects of moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4) on immune function and intestinal flora in healthy rats, thereby investigating the underlying mechanism of moxibustion on immune function.
METHODS:
Twenty 8-week-old SD rats were randomly divided into a young blank group and a young moxibustion group, with 10 rats in each group. Similarly, twenty 8-month-old SD rats were randomly divided into a middle-aged blank group and a middle-aged moxibustion group, with 10 rats in each group. The rats in the two moxibustion groups received moxibustion at "Mingmen" (GV 4) and "Guanyuan" (CV 4), 15 min per session, once daily, five times a week, for a total of four months. The rats in the two blank groups were fed under normal conditions. After the intervention, thymus and spleen indexes were calculated; the morphology of thymus and spleen tissues was observed using HE staining; the flow cytometry was used to detect the expression of CD and CD T lymphocytes and the CD/CD ratio was calculated; ELISA was used to measure the serum levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-17 (IL-17); 16S rRNA high-throughput sequencing was used to analyze the intestinal flora. Additionally, the correlation between the relative abundance of intestinal flora and serum levels of TNF-α, IFN-γ, IL-6, IL-10 and IL-17 was analyzed.
RESULTS:
Compared with the young blank group, the young moxibustion group exhibited an increase in the cortical area of thymus tissue with tighter lymphocyte arrangement; compared with the middle-aged blank group, the middle-aged moxibustion group showed an increase in thymus index (P<0.05) and an increase in the cortical area of thymus tissue. There were no significant differences in spleen index between the 2 moxibustion groups and the 2 blank groups (P>0.05). There were no significant differences in the expression of CD, CD, and CD/CD ratio between the 2 moxibustion groups and the corresponding blank groups (P>0.05). Compared with the young blank group, the young moxibustion group had elevated IL-6 level (P<0.05); compared with the middle-aged blank group, the middle-aged moxibustion group had decreased IL-10 and IL-17 levels (P<0.05). Compared with the young blank group, the young moxibustion group exhibited increased Sobs index, Ace index, and Chao index (P<0.01, P<0.05), as well as increased relative abundance of Spirochaetota, Treponema, Turicibacter, Rikenellaceae_RC9_gut_group (P<0.05), and decreased relative abundance of Dubosiella (P<0.05). Compared with the middle-aged blank group, the middle-aged moxibustion group had increased relative abundance of Spirochaetota, Treponema, norank_f_Peptococcaceae (P<0.05), and decreased relative abundance of Proteobacteria, Allobaculum, and Faecalibaculum (P<0.05). Correlation analysis revealed that relative abundance of Eubacterium_xylanophilum_group and unclassified _f_Lachnospiraceae was negatively correlated with serum TNF-α level (r=-0.39, P=0.03; r=-0.24, P=0.04), while relative abundance of norank_f_norank_o_Clostridia_UCG-014 and Lactobacillus was positively correlated with serum TNF-α level (r=0.37, P=0.04; r=0.43, P=0.02). The relative abundance of Roseburia and Monoglobus was negatively correlated with serum IFN-γ level (r=-0.40, P=0.02; r=-0.44, P=0.01), while relative abundance of Lactobacillus was positively correlated with serum IL-10 level (r=0.43, P=0.02).
CONCLUSION
Moxibustion could improve immune function in healthy rats, and its mechanism may be related to the regulation of relative abundance of intestinal flora.
Rats
;
Animals
;
Moxibustion
;
Rats, Sprague-Dawley
;
Interleukin-10/genetics*
;
Interleukin-17
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Interferon-gamma
;
Immunity
8.Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus.
Yong YANG ; Zihan HAN ; Zhaoya GAO ; Jiajia CHEN ; Can SONG ; Jingxuan XU ; Hanyang WANG ; An HUANG ; Jingyi SHI ; Jin GU
Chinese Medical Journal 2023;136(23):2847-2856
BACKGROUND:
Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear.
METHODS:
We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups.
RESULTS:
Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga .
CONCLUSIONS
Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Diabetes Mellitus, Type 2
;
Microbiota
;
Bacteria/genetics*
;
Fatty Acids, Volatile
;
Colorectal Neoplasms/metabolism*
;
Butyrates
;
Feces/microbiology*
9.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
10.Synthesis of cello-oligosaccharides which promotes the growth of intestinal probiotics by multi-enzyme cascade reaction.
Peng ZHENG ; Lei WANG ; Meirong HU ; Hua WEI ; Yong TAO
Chinese Journal of Biotechnology 2023;39(8):3406-3420
Soluble cello-oligosaccharide with 2-6 oligosaccharide units is a kind of oligosaccharide with various biological functions, which can promote the proliferation of intestinal probiotics such as Bifidobacteria and Lactobacillus paracei. Therefore, it has a regulatory effect on human intestinal microbiota. In this study, a Cc 01 strain was constructed by expressing cellodextrin phosphorylase (CDP) in Escherichia coli. By combining with a previously constructed COS 01 strain, a three-enzyme cascade reaction system based on strains COS 01 and Cc 01 was developed, which can convert glucose and sucrose into cello-oligosaccharide. After optimization, the final titer of soluble cello-oligosaccharides with 2-6 oligosaccharide units reached 97 g/L, with a purity of about 97%. It contained cellobiose (16.8 wt%), cellotriose (49.8 wt%), cellotetrose (16.4 wt%), cellopentaose (11.5 wt%) and cellohexose (5.5 wt%). When using inulin, xylo-oligosaccharide and fructooligosaccharide as the control substrate, the biomass (OD600) of Lactobacillus casei (WSH 004), Lactobacillus paracei (WSH 005) and Lactobacillus acidophilus (WSH 006) on cello-oligosaccharides was about 2 folds higher than that of the control. This study demonstrated the efficient synthesis of cello-oligosaccharides by a three-enzyme cascade reaction and demonstrated that the synthesized cello-oligosaccharides was capable of promoting intestinal microbial proliferation.
Humans
;
Oligosaccharides
;
Biomass
;
Escherichia coli/genetics*
;
Gastrointestinal Microbiome
;
Glucose

Result Analysis
Print
Save
E-mail