1.Nutritional health knowledge among primary and middle school students in Wenzhou City
XIA Ziqi ; CHEN Qingqing ; GAO Sihai ; WU Maomao
Journal of Preventive Medicine 2026;38(1):908-101,106
Objective:
To investigate the status and influencing factors of nutritional health knowledge awareness among primary and middle school students in Wenzhou City, Zhejiang Province, so as to provide a basis for carrying out targeted nutrition health education for students.
Methods:
The stratified cluster random sampling method was used to select students from 48 schools across 12 counties (cities and districts) in Wenzhou City as survey subjects from October 2023 to February 2024. Basic information, parental information, and nutritional health knowledge were collected using the Questionnaire on nutritional health knowledge for School-Age Children. The awareness rate of nutritional health knowledge was analyzed. Multivariable logistic regression model was used to analyze the influencing factors for nutritional health knowledge awareness among primary and middle school students.
Results:
The survey included 4 405 boys, accounting for 51.42%, and 4 161 girls, accounting for 48.58%. The sample consisted of 2 497 pupils in Grades 1-3 (29.15%), 2 591 pupils in Grades 4-6 (30.25%), 1 739 junior high school students (20.30%), and 1 739 senior high school students (20.30%). The median score of nutrition health knowledge was 75.00 (interquartile range, 19.00), and the awareness rate was 4 524 (52.81%). Multivariable logistic regression analysis showed that girls (OR=1.317, 95%CI: 1.198-1.447), primary school students (Grades 1-3, OR=7.830, 95%CI: 6.444-9.513; Grades 4-6, OR=1.276, 95%CI: 1.066-1.528), and those whose mothers had an educational level above junior high school (senior high school/technical secondary school/technical school/junior college, OR=1.188, 95%CI: 1.044-1.352; bachelor' s degree or above, OR=1.194, 95%CI: 1.024-1.392) had a higher likelihood of nutrition and health knowledge awareness. Conversely, students who were overweight or obese (OR=0.798, 95%CI: 0.671-0.950), lived in school (OR=0.763, 95%CI: 0.650-0.895), and had a daily outdoor activity duration of <30 minutes (OR=0.641, 95%CI: 0.570-0.721) had a lower likelihood of nutritional health knowledge awareness.
Conclusions
The awareness rate of nutritional health knowledge among primary and middle school students in Wenzhou City needs to be improved, and is mainly influenced by gender, educational stage, body mass index, mother' s educational level, and outdoor activity duration. It is recommended to implement differentiated health education strategies and build a "family-school-community" linkage mechanism to improve students' nutrition health literacy.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
4.Economic costs of self-monitoring of gestational diabetes mellitus in Beijing Area
Ziqi ZHANG ; Xiaoyan WANG ; Xinyu PENG ; Qun GAO ; Yu WANG ; Shuiling QU ; Qian WANG ; Xiaoping PAN ; Ailing WANG
Journal of Public Health and Preventive Medicine 2025;36(4):22-26
Objective To analyze the economic cost of self-monitoring of gestational diabetes mellitus, and provide a basis for measuring the economic burden of gestational diabetes mellitus, and to provide a reference for the formulation of intervention development and the adjustment of resource allocation. Methods The individual economic cost of self-monitoring for gestational diabetes mellitus was measured based on a decision tree model, and the total economic cost of self-monitoring for gestational diabetes mellitus in Beijing was estimated. The uncertainty of the model parameters was analyzed using one-way sensitivity analysis. Results The average individual economic cost of gestational diabetes self-monitoring was 1184 RMB, and the individual cost incurred by choosing different types of blood glucose meters ranged from 403 to 18 000 RMB. The average individual economic cost of finger-stick blood glucose monitoring was 606 RMB and the average individual economic cost of continuous glucose monitoring was 2 374 RMB. The total economic cost of gestational diabetes self-monitoring in Beijing was 23.818 0 million RMB, and the total economic cost incurred by choosing different types of blood glucose meters ranged from 0.292 5 to 9.027 9 million RMB. The proportion of the finger-stick blood glucose monitoring had the greatest impact on the robustness of the results. Conclusion Finger-stick blood glucose monitoring is still the dominant self-monitoring method and is less costly than continuous glucose monitoring. Self-monitoring of pregnant women with gestational diabetes mellitus incurs certain economic cost and causes an economic burden on society.
5.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis
6.Development of therapeutic cancer vaccines based on cancer immunity cycle.
Jing ZHANG ; Yiyuan ZHENG ; Lili XU ; Jing GAO ; Ziqi OU ; Mingzhao ZHU ; Wenjun WANG
Frontiers of Medicine 2025;19(4):553-599
Therapeutic cancer vaccines have experienced a resurgence over the past ten years. Cancer vaccines are typically designed to enhance specific stages of the cancer-immunity cycle, primarily by activating the immune system to promote tumor regression and overcome immune resistance. In this review, we summarize the significant recent advancements in cancer immunotherapy based on the cancer-immunity cycle, including the effector cell function, infiltration, initiation, and exhaustion. We summarize the identification of tumor antigens and their delivery through cancer vaccines. We discuss how specific stages of the cancer-immunity cycle have been leveraged to augment anti-tumor immune responses and improve vaccine efficacy. Additionally, the impact of aging and myelosuppression, two prevalent forms of immunological stress, on the effectiveness of therapeutic cancer vaccines is deliberated. Finally, we summarize the current status of various therapeutic cancer vaccines at different clinical trial phases.
Humans
;
Cancer Vaccines/therapeutic use*
;
Neoplasms/therapy*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/immunology*
;
Animals
7.Optimizing arch expansion with clear aligners in the mixed dentition based on finite element analysis
Qinyi LÜ ; Ziqi GAO ; Qingchen FENG ; Hongxiang MEI ; Juan LI
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(8):935-943
Objective·To reveal the direction,efficiency,and mechanical load of single tooth displacement with clear aligners for expansion treatment during the transitional dentition period with the aid of finite element analysis.Additionally,overcorrection and torque compensation systems were designed to address insufficient expansion efficiency and buccal inclination of posterior teeth.Methods·One volunteer in mixed dentition period was included to construct a three dimentional cranio-maxillary complex model and an invisible orthodontic system,simulating the buccal displacement(load 1?4:0.200,0.275,0.300,0.325 mm,respectively)and root buccal torque(load 1:buccal displacement load 0.200 mm,root buccal torque 0°;load 5:buccal displacement load 0.275 mm,root buccal torque 1.0°;load 6:buccal displacement load 0.300 mm,root buccal torque 1.3° and load 7:buccal displacement load 0.325mm,root buccal torque 1.8°)on the maxillary deciduous teeth to the first permanent molar with a non bracket invisible orthodontic appliance.Through finite element analysis,the tooth displacement and equivalent stress distribution of the periodontal membrane can be calculated.Results·Expansion treatment with clear aligners in the transitional dentition phase primarily revealed the effect of buccal expansion of teeth;different teeth achieved different levels of expansion rate.At a set expansion amount of 0.200 mm per side,expansion efficiency in the maxillary first permanent molar was 51.86%,second primary molar 68.76%,first primary molar 73.48%,and primary cuspid 84.17%.By designing over-correction(0.275,0.300,0.325 mm),the results showed significant enhancement in expansion effect.When overcorrection length reached 150%(0.300 mm),expansion efficiency at the maxillary first permanent molar,second primary molar,first primary molar,and primary cuspid were 75.16%,99.96%,107.35%,and 122.37%,respectively.The expansion efficiency of maxillary second primary molar,first primary molar,and primary cuspid was close to 100.00%.The overcorrection design exacerbated the dental effects of expansion,intensifying the tendency for teeth to tilt toward the cheek side,leading to side effects such as buccal inclination and drooping of the palatal cusps.When the overcorrection amount for expansion reached 150%,the crown-root displacement in the upper first permanent molar,second primary molar,first primary molar,and primary cuspid were-0.109,-0.134,-0.132,and-0.298 mm,respectively.Applying specific torque compensation for different tooth positions can combat the buccal inclination of posterior teeth.At an overcorrection length of 150%(0.300 mm)with an added 1.3° root buccal torque,expansion efficiency was 56.15%,73.88%,79.49%,and 87.80%,respectively.While the crown-root displacement differences reduced to-0.081,-0.097,-0.095,and-0.208 mm.Conclusion·When using clear aligners for expansion treatment during a transitional dentition period,side effects such as buccal inclination of posterior teeth exist.Furthermore,various teeth realize differing levels of expansion efficiency,necessitating the design of unique adjustment strategies according to different tooth positions.Overcorrection can improve expansion efficiency but needs to be coordinated with root buccal torque for the whole tooth to move buccally.
8.Visualization analysis on research literature about Linggui Zhugan Decoction based on CiteSpace
Xiyan LI ; Ruoyi LIAO ; Ziqi GAO ; Huijie SI ; Qianxi LI
International Journal of Traditional Chinese Medicine 2024;46(11):1493-1498
Objective:To investigate the research status and hotspots of Linggui Zhugan Decoction.Methods:The research literature about Linggui Zhugan Decoction was retrieved from CNKI, VIP, Wanfang Data and CBM databases from January 1, 2000 to July 11, 2023. NoteExpress 3.8 software was used to merge and remove the weight, and CiteSpace 6.2.R4 software was used to analyze the author, research institution, key words and draw the knowledge map.Results:A total of 1 521 articles were included, and the number of published papers showed a fluctuating upward trend. The main source journals were Chinese Journal of Urban and Rural Enterprise Hygiene, Acta Chinese Medicine, Information of Traditional Chinese Medicine, etc. The main research institutions were Tianjin University of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Shandong University of Traditional Chinese Medicine, etc. Among the most published papers were Huang Jinling from Anhui University of Chinese Medicine (22 articles), Wang Liang from the Institute of Integrated Chinese and Western Medicine of Anhui Academy of Chinese Medicine (14 articles) and Shi Hui from Anhui University of Chinese Medicine (10 articles); high-frequency keywords included chronic heart failure, vertigo, clinical efficacy and so on. Conclusions:The research on Linggui Zhugan Decoction focuses on the clinical research of circulatory system, respiratory system, digestive system and urinary system. The research focus has gradually developed from clinical study, prescription composition and efficacy study, network pharmacology study, mechanism and related theory exploration of prescriptions to clinical practical application.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.


Result Analysis
Print
Save
E-mail