1.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
2.The Role of Skeletal Muscle Satellite Cells-mediated Muscle Regeneration in The Treatment of Age-related Sarcopenia
Wei-Xiu JI ; Jia-Lin LÜ ; Yi-Fan MA ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(8):2033-2050
Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients’ quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β‑Catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
3.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
4.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
5.Preliminary efficacy observation of 3D printed functional spinal external fixation brace combined with McKenzie therapy in the treatment of lumbar disc herniation.
Ning-Xia WANG ; Ping CHEN ; Hai-Dong WANG ; Jing JI ; Fang-Hong NIAN ; Xin LIU ; Chong-Fei JIN ; Duo-Ming ZHAO ; Hao-Lin LI ; Wei-Gang CHENG ; Gui-Lin LAI ; Guo-Biao WU
China Journal of Orthopaedics and Traumatology 2025;38(10):1047-1054
OBJECTIVE:
To observe the clinical efficacy of 3D printing spinal external fixator combined with McKenzie therapy for patients with lumbar dics herniation (LDH).
METHODS:
Sixty patients with LDH between January 2022 and January 2023 were enrolled. Among them, 30 patients were given McKinsey training. According to different treatment methods, all patients were divided into McKenzie group and McKenzie + 3D printing group, 30 patients in each group. The McKenzie group provided McKenzie therapy. The McKenzie + 3D printing group were treated with 3D printing spinal external fixation brace on the basis of McKenzie therapy. Patients in both groups were between 25 and 60 years of age and had their first illness. In the McKenzie group, there were 19 males and 11 females, with an average age of (48.57±5.86) years old, and the disease duration was (7.03 ±2.39) months. The McKenzie + 3D printing group, there were 21 males and 9 females, with an average age of (48.80±5.92) years old, and the disease duration was(7.30±2.56) months. Pain was evaluated using the visual analogue scale (VAS), and lumbar spine function was assessed using the Oswestry disability index (ODI) and the Japanese Orthopaedic Association (JOA) score. VAS, ODI and JOA scores were compared between two groups before treatment and at 1, 3, 6, 9 and 12 months after treatment.
RESULTS:
All patients were followed up for 12 months. The VAS for the McKenzie combined with 3D printing group before treatment and at 1, 3, 6, 9, and 12 months post-treatment were(6.533±0.860), (5.133±1.008), (3.933±0.868), (2.900±0.759), (2.067±0.640), (1.433±0.504), respectively. In the McKenzie group, the corresponding scores were (6.467±0.860), (5.067±1.048), (4.600±0.968), (3.533±1.008), (2.567±0.728), (1.967±0.809), respectively. The ODI of the McKenzie group before treatment and at 1, 3, 6, 9, and 12 months post-treatment were (41.033±6.810)%, (37.933±6.209)%, (35.467±6.962)%, (27.567±10.081)%, (20.800±7.531)%, (13.533±5.158)%, respectively. For the McKenzie combined with 3D printing group, the corresponding ODI were(38.033±5.605)%, (33.000±6.192)%, (28.767±7.045)%, (22.200±5.517)%, (17.700±4.836)%, (11.900±2.771)%, respectively. The JOA scores of the McKenzie combined with 3D printing group before treatment and at 1, 3, 6, 9, and 12 months post-treatment were(8.900±2.074), (13.133±2.330), (15.700±3.583), (20.400±3.480), (22.267±3.084), (24.833±2.640), respectively. In the McKenzie group, the corresponding scores were(9.200±2.091), (12.267±2.406), (15.333±3.198), (18.467±2.240), (20.133±2.751), (22.467±2.849), respectively. Before the initiation of treatment, no statistically significant differences were observed in the VAS, ODI, and JOA scores between two groups (P>0.05). At 3, 6, 9, and 12 months post-treatment, the VAS in the McKenzie combined with 3D printing group was significantly lower than that in the McKenzie group, and the difference was statistically significant (P<0.05). The comparison of ODI between two groups at 1, 3, 6, 9, and 12 months post-treatment revealed statistically significant differences (P<0.05). At 6, 9, and 12 months post-treatment, the JOA score in the McKenzie combined with 3D printing group was significantly higher than that in the McKenzie-only group, and the difference was statistically significant (P<0.05).
CONCLUSION
The combination of 3D printed functional spinal external fixation brace with McKenzie therapy can significantly improve and maintain lumbar function in patients with LDH.
Humans
;
Male
;
Female
;
Middle Aged
;
Printing, Three-Dimensional
;
Intervertebral Disc Displacement/surgery*
;
External Fixators
;
Lumbar Vertebrae/surgery*
;
Adult
;
Braces
;
Treatment Outcome
6.Comparison of short-term safety of two anastomotic techniques when resecting Siewert type II adenocarcinoma of the esophagogastric junction: a multicenter retrospective cohort study
Haikun ZHOU ; Xiaopeng GAO ; Feiyu SHI ; Jingyu WANG ; Qinchuan YANG ; Shisen LI ; Jinqiang LIU ; Panpan JI ; Weidong WANG ; Pengfei YU ; Ruiqi GAO ; Xin GUO ; Gang JI ; Jiangpeng WEI
Chinese Journal of Gastrointestinal Surgery 2024;27(1):47-53
Objective:In this study, we aimed to compare the short-term safety of two digestive tract reconstruction techniques, laparoscopic total abdominal overlap anastomosis and laparoscopic-assisted end-to-side anastomosis, following radical resection of Siewert Type II adenocarcinoma of the esophagogastric junction.Methods:In this retrospective cohort study, we analyzed relevant clinical data of 139 patients who had undergone radical surgery for Siewert Type II esophagogastric junction adenocarcinoma. These included 89 patients treated at the First Affiliated Hospital of Air Force Medical University from November 2021 to July 2023, 36 patients treated at the First Affiliated Hospital of Xi'an Jiaotong University from December 2020 to June 2021, and 14 patients treated at the Yuncheng Central Hospital in Shanxi Province from September 2021 to November 2022. The group consisted of 107 men (77.0%) and 32 women (23.0%) of mean age 62.5±9.3 years. Forty-eight patients underwent laparoscopic total abdominal overlap anastomosis (overlap group), and 91 laparoscopic-assisted end-to-side anastomosis (end-to-side group). Clinical data, surgical information, pathological findings, postoperative recovery, and related complications were compared between the two groups.Results:There were no significant differences in general clinical data between the overlap and end-to-side anastomosis groups (all P>0.05), indicating comparability. There was no significant difference in operation time (267.2±60.1 minutes vs. 262.8±70.6 minutes, t=0.370, P=0.712). However, the intraoperative blood loss in the overlap group (100 [50, 100] mL) was significantly lower compared to the end-to-side group (100[50, 175] mL, Z=2.776, P=0.005). Compared to the end-to-side group, longer distances between the tumor and distal resection margin proximal(1.7±1.0 cm vs. 1.3±0.9 cm, t=2.487, P=0.014) and the tumor and distal resection margin (9.5±2.9 cm vs. 7.9±3.5 cm, t=2.667, P=0.009) were achieved in the overlap group. Compared with the end-to-side group, the overlap group achieved significantly earlier postoperative ambulation (1.0 [1.0, 2.0] days vs. 2.0 [1.0, 3.0] days, Z=3.117, P=0.002), earlier time to first drink (4.7±2.6 days vs. 6.2±3.0 days, t=2.851, P=0.005), and earlier time to first meal (6.0±2.7 days vs. 7.1±3.0 days, t=2.170, P=0.032). However, the hospitalization costs were higher in the overlap group (113, 105.5±37, 766.3) yuan vs. (97, 250.2±27, 746.9) yuan; this difference is significant ( t=2.818, P=0.006). There were no significant differences between the two groups in postoperative hospital stay, total number of lymph nodes cleared, or time to first postoperative flatus (all P>0.05). The incidence of surgery-related complications was 22.9%(11/48) in the overlap group and 19.8% (18/91) in the end-to-side group; this difference is not significant (χ2=0.187, P=0.831). Further comparison of complications using the Clavien-Dindo classification also showed no significant differences ( Z=0.406, P=0.685). Conclusions:Both laparoscopic total abdominal overlap anastomosis and laparoscopic-assisted end-to-side anastomosis are feasible for radical surgery for Siewert Type II esophagogastric junction adenocarcinoma. Laparoscopic total abdominal overlap anastomosis achieves longer proximal and distal resection margins and better postoperative recovery; however, end-to-side anastomosis is more cost-effective.
7.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
8.Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction
Huai-Han ZHANG ; Yong-Jie CAO ; Ji ZHANG ; Jian XIONG ; Ji-Wei MA ; Xiao-Tong YANG ; Ping HUANG ; Yong-Gang MA
Journal of Forensic Medicine 2024;40(2):154-163
Objective To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China,and evaluate its feasibility and reliability.Methods The retrospective pelvic CT imaging data of 1 200 samples(600 males and 600 females)aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models.The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries.Using the ResNet34 model,500 samples of different sexes were randomly selected as training and verification set,the remaining samples were used as testing set.Initialization and transfer learning were used to train images that distinguish sex and left/right site.Mean absolute error(MAE)and root mean square error(RMSE)were used as primary indicators to evaluate the model.Results Prediction results varied between sexes,with bilateral models outperformed left/right unilateral ones,and transfer learning models showed superior performance over initial models.In the prediction results of bilateral transfer learning models,the male MAE was 7.74 years and RMSE was 9.73 years,the female MAE was 6.27 years and RMSE was 7.82 years,and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years.Conclusion The skeletal age estimation model,utilizing is-chial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning,can effectively estimate adult ischium age.
9.Role of Mitochondria in Exercise Protecting Myocardium From Ischemia-reperfusion Injury
Wei-Xiu JI ; Yi GENG ; Shuo WANG ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2024;51(5):1090-1104
Acute myocardial infarction (AMI) has become the leading cause of death in cardiovascular diseases. Myocardial ischemia and reperfusion (MI/R) occurs when myocardial blood circulation is reconstructed after blood supply is limited or lack, often after myocardial infarction, and is the main cause of acute myocardial injury. According to the length of ischemia time, arrhythmia, myocardial inhibition, and myocardial infarction may occur in sequence in MI/R. Mitochondria are the key organelles involved in MI/R injury. Mitochondrial ROS eruption, Ca2+ imbalance, mPTP opening, mitochondrial swelling, and release of pro-apoptotic proteins all lead to mitochondrial dysfunction and myocardial function impairment. Exercise is an effective intervention to prevent myocardial ischemia-reperfusion injury, and its protective effect is closely related to the intensity of exercise, the length of exercise time, the type of exercise and the internal exercise ability. The mitochondrial mechanism of exercise protection against myocardial ischemia-reperfusion injury is determined by many factors. During reperfusion, the heart after trained is better able to maintain energy homeostasis, maintain ΔΨm and limit mPTP activation, maintain ATP synthesis. Activation of the sarcoKATP and/or mitoKATP channels by exercise induces cellular and/or myocardial hyperpolarization, protecting the mitochondria and myocardium during MI/R. Exercise-trained hearts can regulate calcium homeostasis during MI/R and limit mitochondrial Ca2+ overload. Exercise training can improve the activity of mitochondrial antioxidant enzymes to clear ROS and regulate mitochondrial Ca2+ concentration during MI/R. Exercise can increase the bioavailability of NO near mitochondria and indirectly achieve exercise-induced myocardial protection through protein S-nitrosylation and the eNOS-NO pathway is related to mitochondrial biogenesis after exercise training. Exercise training can also affect mitochondrial dynamics during MI/R by preventing mitochondrial division and promoting mitochondrial fusion. Exercise training can promote autophagy of damaged mitochondria and reduces apoptosis through mitochondria too, thus helping to maintain the function of mitochondrial bank. Besides these, exercise training leads to the production of motor factors (mainly from the muscles, but also from the brain, red blood cells, and other tissues) that contribute to remote regulation of the heart. This paper reviews the mitochondrial mechanism of MI/R, the protective effect of exercise on MI/R and the role of mitochondria in it, in order to provide more theoretical basis and new therapeutic targets for the diagnosis and treatment of heart disease, and provide new targets for drug research and development. In future clinical treatment, it is expected that sports pills targeted mitochondria can treat MI/R injury for bedridden people who cannot exercise or people who do not want to exercise through new technological means such as nanoparticle packaging.
10.FGF1-based Drugs for The Treatment of Obesity-related Complications
Wei-Xiu JI ; Meng LI ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2024;51(6):1341-1356
At present, the incidence of overweight and obesity has reached epidemic levels worldwide, which call a challenge to the prevention and control of chronic metabolic diseases. Because obesity is a major risk factor for a range of metabolic diseases, including type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular and neurodegenerative diseases, sleep apnea, and some types of cancer. However, the drugs remain limited. Therefore, there is an urgent need to develop effective long-term treatments to address obesity-related complications. Fibroblast growth factor 1 (FGF1) is an important regulator of systemic energy homeostasis, glycolipid metabolism and insulin sensitivity. FGF1 is a non-glycosylated polypeptide consisting of 155 amino acids, consisting of 12 inverted parallel β chains with amino and carboxyl terminus, and N-terminus extending freely without the typical secretory signaling sequence, closely related to its own biological activity. Thus, FGF1 mutants or derivatives with different activities can be designed by substitution or splicing modification at theN-terminal. FGF1 plays an irreplaceable role in the development, deposition and function of fat. High-fat diet can regulate available FGF1 through two independent mechanisms of nutritional perception and mechanical perception, and influence the function of fat cells. FGF1 controls blood glucose through peripheral and central effects, enhances insulin sensitivity, improves insulin resistance, and plays a role in diabetic complications, which is expected to become a new target for the treatment of T2DM in the future. FGF1 may be involved in the regulation of NAFLD from mild steatosis to severe non-alcoholic steatohepatitis. FGF1 is closely related to the occurrence and development of a variety of cancers, improve the efficacy of anti-cancer drugs, and play a direct and indirect anti-cancer role. In addition, FGF1 plays an important role in the occurrence and development of the cardiovascular system and the improvement of cardiovascular diseases such as ischemia/reperfusion injury, myocardial infarction, pathological cardiac remodeling, cardiotoxicity. Therefore, FGF1 shows a number of therapeutic benefits in the treatment of obesity and obesity-related complications. But because FGF1 has strong mitotic activity and long-term use has been associated with an increased risk of tumorigenesis, its use in vivo has been limited and enthusiasm for developing it to treat obesity-related complications has been dampened. However, FGF1 was found to induce cell proliferation primarily through FGFR3 and FGFR4, but its metabolic activity was mainly mediated by FGFR1. That is, FGF1 activity that promotes mitosis and anti-obesity-related complications appears to be separable. Currently, many engineered FGF1 variants have been developed, such as FGF1ΔHBS, MT-FGF1ΔHBS, FGF1∆NT, ∆nFGF1, FGF1R50E. Although the effect of FGF1 or its analogues on obesity-related complications has been demonstrated in many rodent studies, there are no relevant clinical results. This may be due to the unknown safety and therapeutic efficacy of FGF1 in large animals and humans, as well as concerns about tumorigenesis that hinder its development into a lifelong therapeutic agent. This review summarizes recent advances in the development of FGF1-based biologic drugs for the treatment of obesity-related complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these obstacles.

Result Analysis
Print
Save
E-mail