1.Gene therapy strategies and prospects for neurofibromatosis type 1.
Tingting ZHENG ; Beiyao ZHU ; Zhichao WANG ; Qingfeng LI
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):1-8
OBJECTIVE:
To summarize the gene therapy strategies for neurofibromatosis type 1 (NF1) and related research progress.
METHODS:
The recent literature on gene therapy for NF1 at home and abroad was reviewed. The structure and function of the NF1 gene and its mutations were analyzed, and the current status as well as future prospects of the transgenic therapy and gene editing strategies were summarized.
RESULTS:
NF1 is an autosomal dominantly inherited tumor predisposition syndrome caused by mutations in the NF1 tumor suppressor gene, which impair the function of the neurofibromin and lead to the disease. It has complex clinical manifestations and is not yet curable. Gene therapy strategies for NF1 are still in the research and development stage. Existing studies on the transgenic therapy for NF1 have mainly focused on the construction and expression of the GTPase-activating protein-related domain in cells that lack of functional neurofibromin, confirming the feasibility of the transgenic therapy for NF1. Future research may focus on split adeno-associated virus (AAV) gene delivery, oversized AAV gene delivery, and the development of new vectors for targeted delivery of full-length NF1 cDNA. In addition, the gene editing tools of the new generation have great potential to treat monogenic genetic diseases such as NF1, but need to be further validated in terms of efficiency and safety.
CONCLUSION
Gene therapy, including both the transgenic therapy and gene editing, is expected to become an important new therapeutic approach for NF1 patients.
Humans
;
Neurofibromatosis 1/pathology*
;
Neurofibromin 1/metabolism*
;
GTPase-Activating Proteins
;
Mutation
;
Genetic Predisposition to Disease
;
Genetic Therapy
2.Research progress in diseases associated with genetic variants of GATOR1 complex.
Meng YUAN ; Huan LUO ; Xueyi RAO ; Jing GAN
Chinese Journal of Medical Genetics 2023;40(7):887-891
The GATOR1 complex is located at the upstream of the mTOR signal pathway and can regulate the function of mTORC1. Genetic variants of the GATOR1 complex are closely associated with epilepsy, developmental delay, cerebral cortical malformation and tumor. This article has reviewed the research progress in diseases associated with genetic variants of the GATOR1 complex, with the aim to provide a reference for the diagnosis and treatment of such patients.
Humans
;
GTPase-Activating Proteins/metabolism*
;
Signal Transduction/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Epilepsy/genetics*
;
Neoplasms
3.RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes.
Xiang LI ; Chuan-Qi ZHONG ; Rui WU ; Xiaozheng XU ; Zhang-Hua YANG ; Shaowei CAI ; Xiurong WU ; Xin CHEN ; Zhiyong YIN ; Qingzu HE ; Dianjie LI ; Fei XU ; Yihua YAN ; Hong QI ; Changchuan XIE ; Jianwei SHUAI ; Jiahuai HAN
Protein & Cell 2021;12(11):858-876
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Animals
;
Apoptosis
;
Caspase 8/metabolism*
;
GTPase-Activating Proteins/metabolism*
;
HEK293 Cells
;
Humans
;
Mice
;
Mice, Knockout
;
Necroptosis
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
4.Function of Rho GTPase Activating Protein 11A in Tumors.
Hui-Nian ZHOU ; Yan-Xian REN ; Long LI ; Ke-Shen WANG ; Zuo-Yi JIAO
Chinese Medical Journal 2018;131(11):1365-1366
5.Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.
Jie GAO ; Yue MA ; Hua-Lin FU ; Qian LUO ; Zhen WANG ; Yu-Huan XIAO ; Hao YANG ; Da-Xiang CUI ; Wei-Lin JIN
Protein & Cell 2016;7(5):351-361
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma.
Animals
;
Catalytic Domain
;
Cell Differentiation
;
drug effects
;
physiology
;
Cell Line, Tumor
;
DNA-Binding Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
Mice
;
Microscopy, Fluorescence
;
Neuroblastoma
;
metabolism
;
pathology
;
Protein Isoforms
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Valproic Acid
;
pharmacology
6.Structural characterization of coatomer in its cytosolic state.
Shengliu WANG ; Yujia ZHAI ; Xiaoyun PANG ; Tongxin NIU ; Yue-He DING ; Meng-Qiu DONG ; Victor W HSU ; Zhe SUN ; Fei SUN
Protein & Cell 2016;7(8):586-600
Studies on coat protein I (COPI) have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting. Here, pursuing negative-stain electron microscopy coupled with single-particle analyses, and also performing CXMS (chemical cross-linking coupled with mass spectrometry) for validation, we have reconstructed the structure of coatomer in its soluble form. When compared to the previously elucidated structure of coatomer in its membrane-bound form we do not observe a large conformational change. Thus, the result uncovers a key difference between how COPI versus clathrin coats are regulated by membrane recruitment.
ADP-Ribosylation Factor 1
;
chemistry
;
metabolism
;
Animals
;
Coatomer Protein
;
chemistry
;
metabolism
;
Cytosol
;
chemistry
;
metabolism
;
GTPase-Activating Proteins
;
chemistry
;
metabolism
;
Humans
;
Membranes, Artificial
;
Rats
7.Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro.
Xiao-li LIU ; Jing SONG ; Ke-jian LIU ; Wen-peng WANG ; Chang XU ; Yu-zeng ZHANG ; Yun LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):712-715
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Animals
;
Antigens, CD
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Feedback, Physiological
;
Fetus
;
Fluorides
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Gene Expression Regulation, Developmental
;
Osteoblasts
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteogenesis
;
drug effects
;
genetics
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Receptor Activator of Nuclear Factor-kappa B
;
genetics
;
metabolism
;
Receptors, Cell Surface
;
genetics
;
metabolism
;
Semaphorins
;
genetics
;
metabolism
;
Signal Transduction
;
Transforming Growth Factor beta1
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism
;
rhoA GTP-Binding Protein
;
genetics
;
metabolism
8.Role and clinical significance of RLIP76 in regulation of multi-drug resistance of small cell lung cancer.
Pan HAIXIA ; Bai YIFENG ; Hu HONGLIN
Chinese Journal of Oncology 2015;37(4):266-271
OBJECTIVETo investigate the role of RLIP76 in regulating multi-drug resistance in small cell lung cancer (SCLC), and to analyze the relationship between its expression and prognosis.
METHODSThe expressions of RLIP76 protein and gene were detected by Western blotting and real-time PCR (RT-PCR) in both the chemosensitive SCLC H69 cell line and chemoresistant H69AR cell line, respectively. siRNA was transfected into the H69AR cells to inhibit RLIP76 expression, and eGFP-RLIP76 was transfected into the H69 cells to enhance RLIP76 expression. The drug-sensitivity of cells to chemotherapeutic drugs (ADM, DDP, VP-16) were detected by CCK8 assay. The expression of RLIP76 in the SCLC tissues was detected by immunohistochemistry. The relationship of RLIP76 expression with clinicopathological features and prognosis of the patients was analyzed.
RESULTSThe expression of RLIP76 in H69AR cells was 13.675 ± 0.983, significantly higher than 1.074 ± 0.107 in the H69 cells (P < 0.01). The drug-sensitivities of H69AR cells to chemotherapeutic drugs were significantly increased when the expression of RLIP76 was down-regulated (P< 0.001). The sensitivities of H69 cells to chemotherapeutic drugs ADM, DDP and VP-16 were significantly decreased after transfection with eGFP-RLIP76 up-regulating the RLIP76 expression (P = 0.003). The positive expression rates were 61.3% and 9.4% in the SCLC tumor tissues and para-cancerous tissues, respectively (P < 0.01). The expression of RLIP76 was significantly correlated with clinical stage, chemosensitivity and overall survival of the SCLC patients (P < 0.05).
CONCLUSIONSOur results suggest that RLIP76 is involved in the regulation of small cell lung cancer multidrug resistance. RLIP76 may serve as a potential target gene to evaluate the chemosensitivity and clinical prognostic for small cell lung cancer.
ATP-Binding Cassette Transporters ; metabolism ; physiology ; Antineoplastic Agents ; pharmacology ; Cisplatin ; pharmacology ; Down-Regulation ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; Etoposide ; pharmacology ; GTPase-Activating Proteins ; metabolism ; physiology ; Humans ; Lung Neoplasms ; drug therapy ; metabolism ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Small Cell Lung Carcinoma ; drug therapy ; metabolism ; Transfection ; Up-Regulation
9.The effect of up-regulated expression of Rap1GAP on the invasion ability of HL-60 cells in vitro and in vivo.
Tingting QIU ; Depeng LI ; Zhenyu LI ; Kailin XU ; Xiaofei QI ; Jiannong CEN ; Zixing CHEN
Chinese Journal of Hematology 2015;36(7):570-574
OBJECTIVETo investigate the effect of up-regulation of Rap1GAP on the invasion ability of leukemic HL-60 cells in vitro, and to establish leukemia mouse model to verify the effects in vivo.
METHODSQuantitative RT-PCR and Western blot methods were used to detect the expression of Rap1GAP in Venus/HL-60 (vehicle control) and Rap1GAP/HL-60 cells (R1 andR2). Transwell method was used to examine the invasion ability in vitro. Quantitative RT-PCR and gelatin zymograph were used to study the expression of MMP-2 and MMP-9. Four-week-old BALB/c nu/nu mice were pre-treated and inoculated with leukemic cells from different groups, several index including survival time were then monitored.
RESULTSRap1GAP mRNA level of R1 and R2 increased about 16-17 folds as compared to the control cells. The invasion rate of R1 and R2 are (55 ± 5)% and (59 ± 4)%, which are significantly higher than (14 ± 4)% of the control cells. The mRNA level of MMP-9 was up-regulated about 12.0 folds in R1 and R2 cells compared to the corresponding control cells. The median survival times of R1 and R2 mice are (32.00 ± 1.85) d and (33.37 ± 2.50) d, respectively, which are shorter than (43.62 ± 2.32) d of the control group. Three mice of R1 and R2 groups showed leukemic cells infiltration in meninges tissue, and the genes of Rap1GAP and MMP-9 were amplified by PCR method.
CONCLUSIONUp-regulated expression of Rap1GAP increased the invasion ability of HL-60 cells accompanied with enhancement of MMP-9 expression in vitro, and the experiment in mouse model also confirmed that Rap1GAP enhanced the invasion of HL-60 cells in vivo.
Animals ; GTPase-Activating Proteins ; metabolism ; HL-60 Cells ; Humans ; Leukemia ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Invasiveness ; RNA, Messenger ; Transcriptional Activation ; Up-Regulation
10.High SIPA-1 expression in proximal tubules of human kidneys under pathological conditions.
Ai-ping FENG ; Qian ZHANG ; Min LI ; Xin-nong JIANG ; Zong-yong ZHANG ; Peng ZHU ; Ming-wei WANG ; Shao-zhong WEI ; Li SU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(1):64-70
Systemic lupus erythematosus (SLE) and clear cell renal cell carcinoma (CC-RCC) are serious disorders and usually fatal, and always accompanied with pathological changes in the kidney. Signal-induced proliferation-associated protein 1 (SIPA-1) is a Rap1GTPase activating protein (Rap1GAP) expressed in the normal distal and collecting tubules of the murine kidney. Lupus-like autoimmune disease and leukemia have been observed in SIPA-1 deficient mice, suggesting a pathological relevance of SIPA-1 to SLE and carcinoma in human being. The expression pattern of SIPA-1 is as yet undefined and the pathogenesis of these diseases in humans remains elusive. In this study, we used both immunohistochemistry and quantum dot (QD)-based immunofluorescence staining to investigate the expression of SIPA-1 in renal specimens from SLE and CC-RCC patients. MTT assay and Western blotting were employed to evaluate the effects of SIPA-1 overexpression on the proliferation and apoptosis of renal cell lines. Semi-quantitative reverse transcriptase-PCR (RT-PCR) was applied to examine the changes of hypoxia-inducible factor-1α (HIF-1α) mRNA level. Results showed that SIPA-1 was highly expressed in the proximal and collecting tubules of nephrons in SLE patients compared to normal ones, and similar results were obtained in the specimens of CC-RCC patients. Although SIPA-1 overexpression did not affect cellular proliferation and apoptosis of both human 786-O renal cell carcinoma cells and rat NRK-52E renal epithelial cell lines, RT-PCR results showed that HIF-1α mRNA level was down-regulated by SIPA-1 overexpression in 786-O cells. These findings suggest that SIPA-1 may play critical roles in the pathological changes in kidney, and might provide a new biomarker to aid in the diagnosis of SLE and CC-RCC.
Apoptosis
;
Base Sequence
;
Cell Line
;
Cell Proliferation
;
DNA Primers
;
GTPase-Activating Proteins
;
metabolism
;
Humans
;
Kidney Tubules, Proximal
;
metabolism
;
pathology
;
Lupus Erythematosus, Systemic
;
metabolism
;
pathology
;
Nuclear Proteins
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail