1.Cellular differential impact of the Rap1 on atherosclerosis.
Shan-Shan SONG ; Hui-Ru YANG ; Xiao-Li YI ; Jun YU ; Chuan-Ming XU
Acta Physiologica Sinica 2025;77(3):483-492
Cardiovascular diseases are the leading cause of mortality, posing a significant threat to human health due to the high incidence rate. Atherosclerosis, a chronic inflammatory disease, serves as the primary pathological basis for most such conditions. The incidence of atherosclerosis continues to rise, but its pathogenesis has not been fully elucidated. As an important member of the small GTPase superfamily, Ras-association proximate 1 (Rap1) is an important molecular switch involved in the regulation of multiple physiological functions including cell differentiation, proliferation, and adhesion. Rap1 achieves the utility of the molecular switch by cycling between Rap1-GTP and Rap1-GDP. Rap1 may influence the occurrence and development of atherosclerosis in a cell-specific manner. This article summarizes the potential role and mechanism of Rap1 in the progression of atherosclerosis in different cells, aiming to provide new therapeutic targets and strategies for clinical intervention.
Humans
;
Atherosclerosis/metabolism*
;
rap1 GTP-Binding Proteins/physiology*
;
Animals
;
Cell Differentiation
;
Cell Adhesion
;
Cell Proliferation
2.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
3.Fine-tuning cell organelle dynamics during mitosis by small GTPases.
Zijian ZHANG ; Wei ZHANG ; Quentin LIU
Frontiers of Medicine 2022;16(3):339-357
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Humans
;
Mitosis
;
Monomeric GTP-Binding Proteins
;
Neoplasms
;
Organelles/physiology*
;
Signal Transduction
4.Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology.
Zuzana BOLOGNA ; Jian Peng TEOH ; Ahmed S BAYOUMI ; Yaoliang TANG ; Il man KIM
Biomolecules & Therapeutics 2017;25(1):12-25
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Bias (Epidemiology)*
;
Felodipine
;
GTP-Binding Proteins
;
Humans
;
Ligands
;
Pathology*
;
Physiology*
;
Transducers
5.Construction of a Recombinant Replication-defective Human Adenovirus Type 5 Expressing G Protein of Irkut Virus and the Immune Test in Mouse.
Yuying WANG ; Qi CHEN ; Ye LIU ; Rongliang HU ; Lecui ZHANG
Chinese Journal of Virology 2015;31(6):634-640
To develop a safe and effective new generation vaccine for IRKV-THChina12 prevention, we constructed a non-replicative recombinant human adenovirus carrying the IRKV-THChina12 G gene, named as rAd5-IRKV-G. The IRKV-THChina12 G protein expressed by the recombinant human adenovirus in 293AD cells was detected by western blot and indirect immunofluorescence test. To evaluate the immunogenicity of the recombinant, mice were immunized with rAd5-IRKV-G by intramuscular (i. m.) or intraperitoneal (i. p.) route and with non-exogenous gene expressing wild type adenovirus wt-rAd5 as a control. Results showed that the rAd5-IRKV-G could induce continuous and statistically significant (P ≤ 0.05) anti-IRKV neutralizing antibody (NA) production in immunized mice by i. m. or i. p. route. In particular, no significant difference (P > 0.05) of the NA titers between the two administration routes were observed, that provides an alternative choice for animal immunization method in the future application.
Adenoviruses, Human
;
genetics
;
physiology
;
Animals
;
Antibodies, Neutralizing
;
immunology
;
Antibodies, Viral
;
immunology
;
GTP-Binding Proteins
;
genetics
;
immunology
;
Gene Expression
;
Genetic Vectors
;
genetics
;
physiology
;
Humans
;
Immunization
;
Lyssavirus
;
enzymology
;
genetics
;
immunology
;
Mice
;
Rhabdoviridae Infections
;
immunology
;
virology
;
Viral Proteins
;
genetics
;
immunology
;
Virus Replication
6.Construction and identification of an RNA interference lentivirus vector targeting the Ras homology C gene of melanoma cells.
Qiying WANG ; Ximei WANG ; Xiaomei ZHAI ; Jianwen ZHANG ; Minjing CHEN ; Linbo LIU
Chinese Medical Journal 2014;127(7):1339-1343
BACKGROUNDMelanoma has the highest mortality among all superficial malignant tumors. The poor prognosis is due to its high metastasis rate and the lack of therapeutic targets. As a molecular switch that controls tumor metastasis, Ras homology C (RhoC) has been correlated with tumor progression, especially tumor invasion and metastasis. However, little research has been done about the effects of RNA interference (RNAi) targeting RhoC on the invasion and metastasis of melanoma. In this study, we constructed an RNAi lentivirus vector targeting the RhoC gene of melanoma cells and identified its silencing effects on the RhoC gene.
METHODSBased on the RhoC gene encoding information, three pGPU6/GFP/Neo-short hairpin (shRNA) plasmids were constructed. After detecting their silencing effects on the RhoC gene of A375 cells, the most effective pGPU6/GFP/Neo-shRNA plasmid was packed with lentivirus to construct the recombinant pLenti6.3-EGFP-453 targeting RhoC. The lentivirus vector was used to infect A375 cells, and then the expression of RhoC mRNA and protein were determined with real-time PCR and Western blotting.
RESULTSThe plasmids pGPU6/GFP/Neo-shRNA 336, pGPU6/GFP/Neo-shRNA 453, and pGPU6/GFP/Neo-shRNA 680 were constructed. After they were transfected into A375 cells, the expressions of RhoC mRNA and protein were 1.47 ± 0.26, 1.13 ± 0.16, 1.39 ± 0.11 and 70.98 ± 9.21, 50.67 ± 6.06, 65.77 ± 4.06, respectively. pGPU6/GFP/Neo-shRNA 453 was the most effective sequence, and was used to successfully construct the pLenti6.3-EGFP-453 lentiviral vector targeting RhoC. pLenti6.3-EGFP-453 was used to infect A375 cells. The expression of RhoC mRNA and protein were 1.05 ± 0.05 and 62.04 ± 15.86 in the lentivirus group, 4.21 ± 0.24 and 220.86 ± 24.07 in the negative lentivirus control group, and 4.63 ± 0.32 and 257.39 ± 12.30 in the normal control group respectively with the difference between the lentivirus group and the control groups being statistically significant (P < 0.05).
CONCLUSIONThe successfully constructed pLenti6.3-EGFP-453 vector targeting the RhoC can effectively infect human melanoma A375 cells in vitro, and significantly inhibit the RhoC mRNA and protein expression.
Cell Line, Tumor ; Genetic Vectors ; genetics ; Humans ; Lentivirus ; genetics ; Melanoma ; genetics ; therapy ; RNA Interference ; physiology ; rho GTP-Binding Proteins ; genetics ; metabolism ; rhoC GTP-Binding Protein
7.Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities.
Lu LU ; Fei YU ; Lan-Ying DU ; Wei XU ; Shi-Bo JIANG
Chinese Medical Journal 2013;126(12):2374-2379
OBJECTIVETo review the mechanisms by which HIV evades different components of the host immune system.
DATA SOURCESThis review is based on data obtained from published articles from 1991 to 2012. To perform the PubMed literature search, the following key words were input: HIV and immune evasion.
STUDY SELECTIONArticles containing information related to HIV immune evasion were selected.
RESULTSAlthough HIV is able to induce vigorous antiviral immune responses, viral replication cannot be fully controlled, and neither pre-existing infected cells nor latent HIV infection can be completely eradicated. Like many other enveloped viruses, HIV can escape recognition by the innate and adaptive immune systems. Recent findings have demonstrated that HIV can also successfully evade host restriction factors, the components of intrinsic immune system, such as APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G), TRIM5α (tripartite motif 5-α), tetherin, and SAMHD1 (SAM-domain HD-domain containing protein).
CONCLUSIONSHIV immune evasion plays an important role in HIV pathogenesis. Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.
APOBEC-3G Deaminase ; Adaptive Immunity ; Antibodies, Neutralizing ; immunology ; Antigens, CD ; physiology ; Carrier Proteins ; physiology ; Complement System Proteins ; immunology ; Cytidine Deaminase ; physiology ; GPI-Linked Proteins ; physiology ; HIV-1 ; immunology ; Humans ; Immune Evasion ; Killer Cells, Natural ; immunology ; Monomeric GTP-Binding Proteins ; physiology ; SAM Domain and HD Domain-Containing Protein 1
8.Relationship of RhoA signaling activity with ezrin expression and its significance in the prognosis for breast cancer patients.
Li MA ; Yue-Ping LIU ; Xiang-Hong ZHANG ; Cui-Zhi GENG ; Zeng-Huai LI
Chinese Medical Journal 2013;126(2):242-247
BACKGROUNDWe have recently reported that RhoA may regulate the invasion and metastasis of breast cancer cells as an upstream signal of ezrin in vitro. In this study, we examined the relationship of RhoA signaling activity with ezrin expression in breast cancer and its prognostic significance in patients with breast cancer.
METHODSParaffin tumor sections of breast cancer were collected retrospectively from 487 patients diagnosed between 2001 and 2004. Immunohistochemical methods were used to detect the expression of RhoA, phosphorylated (activated) RhoA, and ezrin.
RESULTSEzrin overexpression was detectable in 15.2% of 487 invasive breast cancers. The majority (85.1%) of ezrin-overexpressing tumors coexpressed phosphorylated RhoA; 78.8% of tumors with phosphorylated RhoA cooverexpressed ezrin. Patients whose cancers showed overexpression of ezrin or expression of phosphorylated RhoA had shorter survival rates.
CONCLUSIONSRhoA activation is important in human breast cancer due to its upregulation of ezrin; thus, agents that target phosphorylated RhoA may be useful in the treatment of tumors with ezrin overexpression.
Adult ; Aged ; Breast Neoplasms ; chemistry ; mortality ; Cytoskeletal Proteins ; analysis ; Female ; Humans ; Middle Aged ; Phosphorylation ; Prognosis ; Proportional Hazards Models ; Retrospective Studies ; Signal Transduction ; physiology ; Survival Rate ; rhoA GTP-Binding Protein ; analysis ; physiology
9.Research progress of the anti-HIV activity of SAMHD1.
Jun HUANG ; Chao QIU ; Xiao-Yan ZHANG
Chinese Journal of Virology 2012;28(4):477-481
The SAM and HD domain containing protein 1 (Sterile alpha motif domain and HD domain-containing protein 1, SAMHD1) is a putative negative regulator of the antiviral innate immune response. It can significantly increase the antiviral immune response, mediates the interferon-induced inflammatory response involved in the host foreign-virus defense system. The early studies have focused on its gene mutations associated with Aicardi-Goutières syndrome (AGS), the latest study found that SAMHD1 as a potent dGTP-stimulated triphosphohydrolase restricts HIV-1 replication by hydrolyzing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis. Auxiliary gene of HIV-2 and simian immunodeficiency virus (SIVsm / mac) encoding the Vpx protein can eliminate HIV-1 restriction. In recent years, the research on SAMHD1, mores forward rapidly this paper overviews the recent research progression related to the above fields.
Animals
;
Cell Line
;
HIV
;
metabolism
;
physiology
;
Humans
;
Monomeric GTP-Binding Proteins
;
genetics
;
metabolism
;
SAM Domain and HD Domain-Containing Protein 1
;
Viral Regulatory and Accessory Proteins
;
metabolism
10.Mechanism underlying the anterograde transport of the influenza A virus transmembrane proteins and genome in host cytoplasm.
Xiaojuan CHI ; Song WANG ; Yifan HUANG ; Jilong CHEN
Chinese Journal of Biotechnology 2012;28(9):1021-1030
Influenza virus assembly requires the completion of viral protein and vRNP transport to the assembly site at the plasma membrane. Therefore, efficient regulation of intracellular transport of the viral proteins and vRNPs to the surface of the host cell is especially important for virus morphogenesis. Influenza A virus uses the machineries of host cells to transport its own components including ribonucleoproteins (vRNPs) and three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and matrix 2 protein (M2). It has been shown that newly synthesized vRNPs are associated with active form of Rab11 and accumulate at recycling endosomes adjacent to the microtubule organizing center (MTOC) following nuclear export. Subsequently, they are transported along the microtubule network toward the plasma membranes in cargo vesicles. The viral transmembrane proteins are translated on the rough endoplasmic reticulum and transported to the virus assembly site at the plasma membrane. It has been found that several host factors such as ARHGAP21 and GTPase Cdc42 are involved in regulation of intracellular trafficking of influenza A virus transmembrane proteins including NA. In this review, we will highlight the current knowledge about anterograde transport and its regulation of the influenza A virus transmembrane proteins and genome in the host cytoplasm.
Cytoplasm
;
metabolism
;
GTP Phosphohydrolases
;
metabolism
;
GTPase-Activating Proteins
;
metabolism
;
Genome, Viral
;
Hemagglutinin Glycoproteins, Influenza Virus
;
metabolism
;
Humans
;
Influenza A virus
;
genetics
;
pathogenicity
;
physiology
;
Neuraminidase
;
metabolism
;
Protein Transport
;
Ribonucleoproteins
;
metabolism
;
Viral Matrix Proteins
;
metabolism
;
cdc42 GTP-Binding Protein
;
metabolism

Result Analysis
Print
Save
E-mail