1.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Nerve Growth Factor/metabolism*
;
Diabetes Mellitus, Experimental/drug therapy*
;
TRPM Cation Channels/metabolism*
;
GAP-43 Protein/metabolism*
;
Signal Transduction
;
Diabetic Neuropathies/genetics*
;
Fibrosis
2.Effect of moxibustion on expression of GAP-43 in sciatic nerve trunk and ventral horn of spinal cord of rats with primary sciatica and its nerve repair function.
Meng-Meng WU ; Li-da ZHANG ; Kun YANG ; Xing-Zi LUO ; Jian-Feng TU ; Sheng-Chao CAI
Chinese Acupuncture & Moxibustion 2021;41(2):183-188
OBJECTIVE:
To observe the effect of moxibustion at "Huantiao" (GB 30) on the expression of growth-associated protein-43 (GAP-43) in the sciatic nerve trunk and ventral horn of spinal cord (L
METHODS:
A total of 48 healthy male SD rats were randomly divided into a normal group, a sham operation group, a model group and a moxibustion group, 12 rats in each group. The rat model of primary sciatic pain was established by chronic constriction injury (CCI) of the sciatic nerve in the model group and the moxibustion group. On the 8th day of the experiment, moxibustion was adopted at "Huantiao" (GB 30) in the moxibustion group for 5-10 min, once a day for 14 consecutive days. Sciatic nerve function index (SFI) was measured and compared in each group at day 1, 7, 14 and 21. On the 21st day of the experiment, HE staining was used to observe the morphology of ventral horn of rat spinal cord and sciatic nerve trunk. Immunohistochemical method and real-time PCR were used to detect mRNA and protein expressions of GAP-43 in the spinal cord and sciatic nerve trunk of rats.
RESULTS:
On day 7, 14 and 21, there was no statistical difference in SFI between the sham operation group and the normal group (
CONCLUSION
Moxibustion at "Huantiao" (GB 30) could improve the sciatic nerve function in rats with primary sciatica and its mechanism may be related to improving the expression of GAP-43 and enhancing the self-repair ability of the sciatic nerve after injury.
Animals
;
Electroacupuncture
;
GAP-43 Protein/genetics*
;
Male
;
Moxibustion
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
Sciatica/therapy*
;
Spinal Cord
3.Losartan Prevents Maladaptive Auditory-Somatosensory Plasticity After Hearing Loss via Transforming Growth Factor-β Signaling Suppression
Seog Kyun MUN ; Kyu Hee HAN ; Jong Tae BAEK ; Suk Won AHN ; Hyun Sang CHO ; Mun Young CHANG
Clinical and Experimental Otorhinolaryngology 2019;12(1):33-39
OBJECTIVES: Hearing loss disrupts the balance of auditory-somatosensory inputs in the cochlear nucleus (CN) of the brainstem, which has been suggested to be a mechanism of tinnitus. This disruption results from maladaptive auditory-somatosensory plasticity, which is a form of axonal sprouting. Axonal sprouting is promoted by transforming growth factor (TGF)-β signaling, which can be inhibited by losartan. We investigated whether losartan prevents maladaptive auditory-somatosensory plasticity after hearing loss. METHODS: The study consisted of two stages: determining the time course of auditory-somatosensory plasticity following hearing loss and preventing auditory-somatosensory plasticity using losartan. In the first stage, rats were randomly divided into two groups: a control group that underwent a sham operation and a deaf group that underwent cochlea ablation on the left side. CNs were harvested 1 and 2 weeks after surgery. In the second stage, rats were randomly divided into either a saline group that underwent cochlear ablation on the left side and received normal saline or a losartan group that underwent cochlear ablation on the left side and received losartan. CNs were harvested 2 weeks after surgery. Hearing was estimated with auditory brainstem responses (ABRs). Western blotting was performed for vesicular glutamate transporter 1 (VGLUT1), reflecting auditory input; vesicular glutamate transporter 2 (VGLUT2), reflecting somatosensory input; growth-associated protein 43 (GAP-43), reflecting axonal sprouting; and p-Smad2/3. RESULTS: Baseline ABR thresholds before surgery ranged from 20 to 35 dB sound pressure level. After cochlear ablation, ABR thresholds were higher than 80 dB. In the first experiment, VGLUT2/VGLUT1 ratios did not differ significantly between the control and deaf groups 1 week after surgery. At 2 weeks after surgery, the deaf group had a significantly higher VGLUT2/VGLUT1 ratio compared to the control group. In the second experiment, the losartan group had a significantly lower VGLUT2/VGLUT1 ratio along with significantly lower p-Smad3 and GAP-43 levels compared to the saline group. CONCLUSION: Losartan might prevent axonal sprouting after hearing loss by blocking TGF-β signaling thereby preventing maladaptive auditory-somatosensory plasticity.
Animals
;
Axons
;
Blotting, Western
;
Brain Stem
;
Cochlea
;
Cochlear Nucleus
;
Evoked Potentials, Auditory, Brain Stem
;
GAP-43 Protein
;
Hearing Loss
;
Hearing
;
Losartan
;
Plastics
;
Rats
;
Tinnitus
;
Transforming Growth Factors
;
Vesicular Glutamate Transport Protein 1
;
Vesicular Glutamate Transport Protein 2
4.Is There Additive Therapeutic Effect When GCSF Combined with Adipose-Derived Stem Cell in a Rat Model of Acute Spinal Cord Injury?.
Joongkee MIN ; Jeong Hoon KIM ; Kyoung Hyo CHOI ; Hyung Ho YOON ; Sang Ryong JEON
Journal of Korean Neurosurgical Society 2017;60(4):404-416
OBJECTIVE: Functional and neural tissue recovery has been reported in many animal studies conducted with stem cells. However, the combined effect of cytokines and stem cells has not yet been adequately researched. Here, we analyzed the additive effects of granulocyte colony-stimulating factor (GCSF) on adipose-derived stem cells (ADSCs) infusion in the treatment of acute spinal cord injury (SCI) in rats. METHODS: Four days after intrathecal infusion tubes implantation in Sprague-Dawley rats, SCI was induced with an infinite horizon impactor. In the Sham group (n=5), phosphate-buffered saline was injected 3, 7, and 14 days after SCI. GCSF, ADSCs, and ADSCs with GCSF were injected at the same time in the GCSF (n=8), ADSC (n=8), and ADSC+GCSF groups (n=7), respectively. RESULTS: The ADSC and ADSC+GCSF groups, but not the GCSF group, showed significantly higher Basso-Beattie-Bresnahan scores than the Sham group during 8 weeks (p<0.01), but no significant difference between the ADSC and ADSC+GCSF groups. In the ladder rung test, all four groups were significantly different from each other, with the ADSC+GCSF group showing the best improvement (p<0.01). On immunofluorescent staining (GAP43, MAP2), western blotting (GAP43), and reverse transcription polymerase chain reaction (GAP43, nerve growth factor), the ADSC and ADSC+GCSF groups showed higher levels than the Sham and GCSF groups. CONCLUSION: Our analyses suggest that the combination of GCSF and ADSCs infusions in acute SCI in the rat does not have a significant additive effect. Hence, when combination agents for SCI stem cell therapy are considered, molecules other than GCSF, or modifications to the methodology, should be investigated.
Animals
;
Blotting, Western
;
Combined Modality Therapy
;
Cytokines
;
GAP-43 Protein
;
Granulocyte Colony-Stimulating Factor
;
Mesenchymal Stromal Cells
;
Models, Animal*
;
Polymerase Chain Reaction
;
Rats*
;
Rats, Sprague-Dawley
;
Reverse Transcription
;
Spinal Cord Injuries*
;
Spinal Cord*
;
Stem Cells*
5.Reproductive performance of genetically engineered mice housed in different housing systems.
Shikha YADAV ; Inderjeet YADAV ; Kunal PRATAP ; Pradeep Kumar TIWARI ; Vijay Pal SINGH
Laboratory Animal Research 2017;33(2):68-75
The genetically engineered mice require special husbandry care and are mainly housed in Individually Ventilated Cage (IVC) systems and Static Micro Isolator Cages (SMIC) to minimize the risk for spreading undesirable microorganisms. However, the static micro isolation cage housing like SMIC are being replaced with IVC systems in many facilities due to a number of benefits like a higher density housing in limited space, better protection from biohazards and allergens and decreased work load due to decreased frequency of cage changing required in this system. The purpose of this study was to examine the reproductive performance of genetically engineered mice housed in individually ventilated cages (IVC) and Static Micro Isolator Cages (SMIC). When the B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/Mmjax transgenic mice were housed in these two housing systems, the number of litters per dam, number of pups born per dam and number of pups weaned per dam were found to be slightly higher in the IVC as compared to the SMIC but the difference was not significant (P<0.05). In case of Growth Associated Protein 43 (GAP-43) knockout mice, the number of litters born per dam and the number of pups born per dam were marginally higher in the IVC as compared to those housed in SMIC but the difference was not significant (P<0.05). Only the number of pups weaned per dam were found to be significantly higher as compared to those housed in the SMIC system at P<0.05.
Allergens
;
Animals
;
GAP-43 Protein
;
Hazardous Substances
;
Housing*
;
Mice*
;
Mice, Knockout
;
Mice, Transgenic
6.Hippocampus-dependent Task Improves the Cognitive Function after Ovariectomy in Rats.
Osong Public Health and Research Perspectives 2017;8(3):227-234
OBJECTIVES: Estrogen is an important hormone for cell growth, development, and differentiation by transcriptional regulation and modulation of intracellular signaling via second messengers. The reduction in the estrogen level after ovariectomy may lead to cognitive impairments associated with morphological changes in areas of the brain mediate memory. The aim of the present study was to find out the effect of tasks on the cognitive function after ovariectomy in rats. METHODS: The animals used in the experiment were 50 Sprague-Dawley female rats. This study applied a hippocampus-independent task (wheel running) and a hippocampus-dependent task (Morris water maze) after ovariectomy in rats and measured the cognitive performance (object-recognition and object-location test) and growth-associated protein 43 (GAP-43) and neurotrophin 3 (NT-3) expression in the hippocampus, which is an important center for memory and learning. RESULTS: There were meaningful differences between the hippocampus-independent and hippocampus-dependent task groups for the object-location test and GAP-43 and NT-3 expression in the hippocampus, but not the object-recognition test. However, the hippocampus-independent task group showed a significant improvement in the object-recognition test, compared to the control group. CONCLUSION: These results suggest that hippocampus-dependent task training after ovariectomy enhances the hippocampus-related memory and cognitive function that are associated with morphological and functional changes in the cells of the hippocampus.
Animals
;
Brain
;
Cognition Disorders
;
Cognition*
;
Estrogens
;
Female
;
GAP-43 Protein
;
Hippocampus
;
Humans
;
Learning
;
Memory
;
Neurotrophin 3
;
Ovariectomy*
;
Rats*
;
Rats, Sprague-Dawley
;
Second Messenger Systems
;
Water
7.Preventive Effect of Different Compatibilities of Ramulus Cinnamomi and Radix Paeomlae alba in Guizhi Decoction on Cardiac Sympathetic Denervation Induced by 6-OHDA.
Ping JIANG ; Du-fang MA ; Yue-hua JIANG ; Jin-long YANG ; Xiang-dong XU ; Xue WANG ; Hai-qing LIN ; Xiao LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):608-613
OBJECTIVETo observe the preventive effect of different compatibilities of Ramulus Cinnamomi (RC) and Radix Paeomiae alba (RPA) in Guizhi Decoction (GZD) on neurotransmitters and their rate-limiting enzymes, and neurotrophic factors of cardiac sympathetic denervation model rats induced by 6-hydroxydopamine (6-OHDA).
METHODSTotally 54 male Wistar rats were randomly divided into 6 groups, i.e., the blank control group, the model group, the methycobal group, the 2:1 (RC/RPA) Guishao group, the 1:2 Guishao group, and the 1:1 Guishao group, 9 in each group. Sympathetic denervation was induced by intraperitoneal injection of 6-OHDA for three successive days. Rats in the methycobal group and GZD groups were administered with corresponding decoction by gastrogavage 1 week before modeling (methycobal at the daily dose 0.15 mg/kg; GZD at the daily dose of 4.0, 5.5, 5.5 g crude drugs/kg for GZD 1:1, 1:2, and 2:1 groups). All medication lasted for 10 successive days. Levels of norepinephrine (NE), tyrosine hydroxylase (TH), choline acetyl-transferase (ChAT), nerve growth factor (NGF), growth associated protein43 (GAP-43) and ciliary neurotrophic factor (CNTF) in myocar- dial homogenates of right atrium and ventricular septum were detected by ELISA.
RESULTSCompared with the blank control group, levels of NE, TH, TH/ChAT ratio, and GAP-43 in myocardial homogenates of right atrium and ventricular septum decreased in the model group, and level of NGF increased (P < 0.01, P < 0.05). Compared with the model group, levels of NE and GAP-43 increased in the right atrium and interventricular septum; NGF level of the ventricular septum decreased in the methycobal group and each GZD groups. TH and TH/ChAT ratio in the right atrium increased in the 2:1 Guishao group and the 1:2 Guishao group (P < 0.01, P < 0.05); NGF levels in the right atrium and interventricular septum decreased only in the 1:1 Guishao group (P < 0.01, P< 0.05). Compared with the methycobal group, levels of NE, TH, and GAP-43 in the right atrium and interventricular septum increased, and NGF levels in the right atrium and interventricular septum decreased in the 1:1 Guishao group (P < 0.05). Compared with the methycobal group, levels of NE and GAP-43 in interventricular septum increased in the 2:1 Guishao group (P < 0.05).
CONCLUSIONGZD (with the proportion between RC and RPA 2:1 and 1:1) could improve contents of neurotransmitters and their rate-limiting enzymes, as well as neurotrophic factors in cardiac sympathetic denervation model rats induced by 6-OHDA, alleviate cardiac sympathetic denervation induced by 6-OHDA, and maintain the balance of sympathetic-vagal nerve system.
Animals ; Choline O-Acetyltransferase ; metabolism ; Ciliary Neurotrophic Factor ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; metabolism ; Heart ; drug effects ; innervation ; Male ; Myocardium ; metabolism ; Nerve Growth Factor ; metabolism ; Norepinephrine ; metabolism ; Oxidopamine ; adverse effects ; Random Allocation ; Rats ; Rats, Wistar ; Sympathectomy ; Tyrosine 3-Monooxygenase ; metabolism
8.Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice.
Dong Sup HWANG ; Hyo Bum KWAK ; Il Gyu KO ; Sung Eun KIM ; Jun Jang JIN ; Eun Sang JI ; Hyun Hee CHOI ; Oh Young KWON
International Neurourology Journal 2016;20(Suppl 2):S141-S149
PURPOSE: Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. METHODS: The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. RESULTS: Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. CONCLUSIONS: Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.
Animals
;
Blotting, Western
;
Brain-Derived Neurotrophic Factor
;
Circadian Rhythm*
;
Cyclic AMP Response Element-Binding Protein
;
Early Growth Response Protein 1
;
Exercise Test
;
Fluorescent Antibody Technique
;
GAP-43 Protein
;
Hippocampus
;
Learning
;
Memory*
;
Memory, Short-Term
;
Mice*
;
Neurogenesis
;
Neuronal Plasticity
;
Post-Synaptic Density
;
Protein-Tyrosine Kinases
;
Spatial Learning
9.Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice.
Dong Sup HWANG ; Hyo Bum KWAK ; Il Gyu KO ; Sung Eun KIM ; Jun Jang JIN ; Eun Sang JI ; Hyun Hee CHOI ; Oh Young KWON
International Neurourology Journal 2016;20(Suppl 2):S141-S149
PURPOSE: Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. METHODS: The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. RESULTS: Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. CONCLUSIONS: Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes.
Animals
;
Blotting, Western
;
Brain-Derived Neurotrophic Factor
;
Circadian Rhythm*
;
Cyclic AMP Response Element-Binding Protein
;
Early Growth Response Protein 1
;
Exercise Test
;
Fluorescent Antibody Technique
;
GAP-43 Protein
;
Hippocampus
;
Learning
;
Memory*
;
Memory, Short-Term
;
Mice*
;
Neurogenesis
;
Neuronal Plasticity
;
Post-Synaptic Density
;
Protein-Tyrosine Kinases
;
Spatial Learning
10.Therapeutic effect of acupuncture treatment on ischemic hypoxic neonate rats with cerebral palsy.
Su-hui LI ; Hong-tao SUN ; Yan-min WANG ; Zheng-jun WEI
Chinese Journal of Applied Physiology 2015;31(5):473-476
OBJECTIVETo explore the mechanisms of acupuncture treatment promoting the motor function recovery of neonate rats with cerebral palsy.
METHODSThe improved hypoxic-ischemic encephalopathy (HIE) means was performed to establish the model of neonate rats with cerebral palsy. All neonate rats were randomly divided into 3 groups: sham group, model group and acupuncture group (n = 20). We observed and scored motor function of rats, measured the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in serum, and also measured the expression of synaptophysin (SYP) and growth associated protein-43 (GAP-43) in the diseased region of cerebral tissue.
RESULTSThe motor function scores (11.3 +/- 0.29) and the serum level of SOD (147.1 +/- 12.7) U/ml in acupuncture treatment group were higher than those of model group ( P < 0.05). The serum level of MDA was lower in acupuncture treatment group than that of model group (P < 0.05). The expression of SYP and GAP-43 in the diseased region of cerebral tissue of acupuncture treatment group were higher than those of model group ( P < 0.05) .
CONCLUSIONAcupuncture-therapy could improve the motor function of neonate rats with cerebral palsy by decreasing the content of MDA in serum, increasing the contents of SOD in serum, and prolonging the upregulation of SYP and GAP-43 expressions in hmin tissue.
Acupuncture Therapy ; Animals ; Animals, Newborn ; Cerebral Palsy ; therapy ; Disease Models, Animal ; GAP-43 Protein ; metabolism ; Hypoxia-Ischemia, Brain ; therapy ; Malondialdehyde ; metabolism ; Rats ; Superoxide Dismutase ; metabolism ; Synaptophysin ; metabolism

Result Analysis
Print
Save
E-mail