1.Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression.
Camila Paz MUÑOZ-GREZ ; Mabel Angélica VIDAL ; Tamara Beatriz ROJAS ; Luciano Esteban FERRADA ; Felipe Andrés ZUÑIGA ; Agustin Andrés VERA ; Sergio Andrés SANHUEZA ; Romina Andrea QUIROGA ; Camilo Daniel CABRERA ; Barbara Evelyn ANTILEF ; Ricardo Andrés CARTES ; Milovan Paolo ACEVEDO ; Marco Andrés FRAGA ; Pedro Felipe ALARCÓN-ZAPATA ; Mauricio Alejandro HERNÁNDEZ ; Alexis Marcelo SALAS-BURGOS ; Francisco TAPIA-BELMONTE ; Milly Loreto YÁÑEZ ; Erick Marcelo RIQUELME ; Wilfredo Alejandro GONZÁLEZ ; Cesar Andrés RIVERA ; Angel Alejandro OÑATE ; Liliana Ivonne LAMPERTI ; Estefanía NOVA-LAMPERTI
International Journal of Oral Science 2025;17(1):1-1
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from Fusobacterium nucleatum (F. nucleatum) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that F. nucleatum modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that F. nucleatum and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, F. nucleatum promotes pro-tumoral mechanism in oral cancer.
Humans
;
Fusobacterium nucleatum/metabolism*
;
Mouth Neoplasms/metabolism*
;
Disease Progression
;
Proteomics
;
Carcinoma, Squamous Cell/metabolism*
;
Host-Pathogen Interactions
;
Metabolic Networks and Pathways
;
Case-Control Studies
;
Mass Spectrometry
2.Physiologically relevant coculture model for oral microbial-host interactions.
Zeyang PANG ; Nicole M CADY ; Lujia CEN ; Thomas M SCHMIDT ; Xuesong HE ; Jiahe LI
International Journal of Oral Science 2025;17(1):42-42
Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications. In vitro bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner. However, existing in vitro coculture models fail to establish conditions that are suitable for the growth of both mammalian cells and anaerobes, thereby hindering a comprehensive understanding of their interactions. Here, we present an asymmetric gas coculture system that simulates the oral microenvironment by maintaining distinct normoxic and anaerobic conditions for gingival epithelial cells and anaerobic bacteria, respectively. Using a key oral pathobiont, Fusobacterium nucleatum, as the primary test bed, we demonstrate that the system preserves bacterial viability and supports the integrity of telomerase-immortalized gingival keratinocytes. Compared to conventional models, this system enhanced bacterial invasion, elevated intracellular bacterial loads, and elicited more robust host pro-inflammatory responses, including increased secretion of CXCL10, IL-6, and IL-8. In addition, the model enabled precise evaluation of antibiotic efficacy against intracellular pathogens. Finally, we validate the ability of the asymmetric system to support the proliferation of a more oxygen-sensitive oral pathobiont, Porphyromonas gingivalis. These results underscore the utility of this coculture platform for studying oral microbial pathogenesis and screening therapeutics, offering a physiologically relevant approach to advance oral and systemic health research.
Coculture Techniques/methods*
;
Humans
;
Fusobacterium nucleatum/physiology*
;
Gingiva/microbiology*
;
Keratinocytes/microbiology*
;
Host Microbial Interactions
;
Mouth/microbiology*
;
Host-Pathogen Interactions
;
Epithelial Cells/microbiology*
;
Cells, Cultured
;
Porphyromonas gingivalis
3.Identification of a Fusobacterial RNA-binding protein involved in host small RNA-mediated growth inhibition.
Pu-Ting DONG ; Mengdi YANG ; Jie HU ; Lujia CEN ; Peng ZHOU ; Difei XU ; Peng XIONG ; Jiahe LI ; Xuesong HE
International Journal of Oral Science 2025;17(1):48-48
Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome, with implications for microbial pathogenesis and host defense. Among these, transfer RNA-derived small RNAs (tsRNAs) have garnered attention for their roles in modulating microbial behavior. However, the bacterial factors mediating tsRNA interaction and functionality remain poorly understood. In this study, using RNA affinity pull-down assay in combination with mass spectrometry, we identified a putative membrane-bound protein, annotated as P-type ATPase transporter (PtaT) in Fusobacterium nucleatum (Fn), which binds Fn-targeting tsRNAs in a sequence-specific manner. Through targeted mutagenesis and phenotypic characterization, we showed that in both the Fn type strain and a clinical tumor isolate, deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition. Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant, highlighting the functional significance of PtaT in purine and pyrimidine metabolism. Furthermore, AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA. By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs (sRNAs), our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions.
Fusobacterium nucleatum/growth & development*
;
RNA-Binding Proteins/genetics*
;
Bacterial Proteins/genetics*
;
RNA, Bacterial/metabolism*
;
Humans
;
RNA, Transfer/metabolism*
4.Study of the inflammatory activating process in the early stage of Fusobacterium nucleatum infected PDLSCs.
Yushang WANG ; Lihua WANG ; Tianyong SUN ; Song SHEN ; Zixuan LI ; Xiaomei MA ; Xiufeng GU ; Xiumei ZHANG ; Ai PENG ; Xin XU ; Qiang FENG
International Journal of Oral Science 2023;15(1):8-8
Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.
Humans
;
Fusobacterium nucleatum/metabolism*
;
NF-kappa B/metabolism*
;
Periodontal Ligament/metabolism*
;
Signal Transduction
;
Fusobacterium Infections/pathology*
;
Stem Cells/metabolism*
5.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
Humans
;
Histidine Kinase/metabolism*
;
Fusobacterium nucleatum/metabolism*
;
Automobiles
;
Protein Kinases/genetics*
;
Escherichia coli/metabolism*
;
Colorectal Neoplasms
6.Advances on the treatment of Fusobacterium nucleatum-promoted colorectal cancers using nanomaterials.
Hang WANG ; Xiaoxue HOU ; Jianfeng LIU ; Cuihong YANG
Chinese Journal of Biotechnology 2023;39(9):3670-3680
Fusobacterium nucleatum (Fn) is an oral anaerobic bacterium that has recently been found to colonize on the surface of colorectal cancer cells in humans, and its degree of enrichment is highly negatively correlated with the prognosis of tumor treatment. Numerous studies have shown that Fn is involved in the occurrence and development of colorectal cancer (CRC), and Fn interacts with multiple components in the tumor microenvironment to increase tumor resistance. In recent years, researchers have begun using nanomedicine to inhibit Fn's proliferation at the tumor site or directly target Fn to treat CRC. This review summarizes the mechanism of Fn in promoting CRC and the latest research progress on Fn-related CRC therapy using different nanomaterials. Finally, the applications perspective of nanomaterials in Fn-promoted CRC therapy was prospected.
Humans
;
Colorectal Neoplasms/pathology*
;
Fusobacterium nucleatum/genetics*
;
Base Composition
;
RNA, Ribosomal, 16S
;
Phylogeny
;
Sequence Analysis, DNA
;
Tumor Microenvironment
7.Research progress of correlation between periodontal pathogens and systemic diseases.
Journal of Southern Medical University 2020;40(5):759-764
Periodontal pathogens are the main pathogenic factor of periodontitis. Periodontal pathogens have a large variety of virulence factors such as lipopolysaccharide, fimbriae and proteases, which enables the pathogens to infect periodontal tissues and stimulate the secretion of inflammatory cytokines, causing chronic systemic inflammation. Periodontal pathogens may invade multiple systems such as the circulatory system, immune system, respiratory system and digestive system to cause systematic diseases. Recent studies have shown that periodontal pathogens may have close relations with systemic diseases such as cardiovascular disease, diabetes, rheumatoid arthritis, and cancer. Among the periodontal pathogens, can be found in atherosclerotic plaques to impairing the function of the vascular endothelium; may also increase the level of inflammatory factors such as TNF-α to promote insulin resistance and diabetes. Many of the periodontal pathogens such as , and can be detected in the synovial fluid of rheumatoid arthritis patients, suggesting their involvement in the pathogenesis of rheumatoid arthritis. may cause alterations in the intestinal microbiome in mice and promote the occurrence of intestinal tumors. Herein we review the recent progresses in the relationship between periodontal pathogens and systemic diseases.
Aggregatibacter actinomycetemcomitans
;
Animals
;
Fusobacterium nucleatum
;
Humans
;
Insulin Resistance
;
Periodontitis
;
Porphyromonas gingivalis
;
Prevotella intermedia
8.Prognostic Impact of Fusobacterium nucleatum Depends on Combined Tumor Location and Microsatellite Instability Status in Stage II/III Colorectal Cancers Treated with Adjuvant Chemotherapy
Hyeon Jeong OH ; Jung Ho KIM ; Jeong Mo BAE ; Hyun Jung KIM ; Nam Yun CHO ; Gyeong Hoon KANG
Journal of Pathology and Translational Medicine 2019;53(1):40-49
BACKGROUND: This study aimed to investigate the prognostic impact of intratumoral Fusobacterium nucleatum in colorectal cancer (CRC) treated with adjuvant chemotherapy. METHODS: F. nucleatum DNA was quantitatively measured in a total of 593 CRC tissues retrospectively collected from surgically resected specimens of stage III or high-risk stage II CRC patients who had received curative surgery and subsequent oxaliplatin-based adjuvant chemotherapy (either FOLFOXor CAPOX). Each case was classified into one of the three categories: F. nucleatum–high, –low, or –negative. RESULTS: No significant differences in survival were observed between the F.nucleatum–high and –low/negative groups in the 593 CRCs (p = .671). Subgroup analyses according to tumor location demonstrated that disease-free survival was significantly better in F.nucleatum–high than in –low/negative patients with non-sigmoid colon cancer (including cecal, ascending, transverse, and descending colon cancers; n = 219; log-rank p = .026). In multivariate analysis, F. nucleatum was determined to be an independent prognostic factor in non-sigmoid colon cancers (hazard ratio, 0.42; 95% confidence interval, 0.18 to 0.97; p = .043). Furthermore, the favorable prognostic effect of F. nucleatum–high was observed only in a non-microsatellite instability-high (non-MSI-high) subset of non-sigmoid colon cancers (log-rank p = 0.014), but not in a MSI-high subset (log-rank p = 0.844), suggesting that the combined status of tumor location and MSI may be a critical factor for different prognostic impacts of F. nucleatum in CRCs treated with adjuvant chemotherapy. CONCLUSIONS: Intratumoral F. nucleatum load is a potential prognostic factor in a non-MSI-high/non-sigmoid/non-rectal cancer subset of stage II/III CRCs treated with oxaliplatin-based adjuvant chemotherapy.
Chemotherapy, Adjuvant
;
Colon, Descending
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Disease-Free Survival
;
DNA
;
Fusobacterium nucleatum
;
Fusobacterium
;
Gastrointestinal Microbiome
;
Humans
;
Microsatellite Instability
;
Microsatellite Repeats
;
Multivariate Analysis
;
Prognosis
;
Retrospective Studies
9.Relationship of Oral Bacterial Load Over One Year of Smoking Cessation
Sunghyun KIM ; Min Seock SEO ; Soo Jeong HWANG
Journal of Dental Hygiene Science 2019;19(4):213-219
BACKGROUND: Smoking exerts an adverse effect on the periodontal tissue by reorganizing the ecosystem of oral microorganisms and is considered to be an important factor in the development of periodontal disease. Although cross-sectional studies on smokers and non-smokers have been attempted to investigate the microbial differences in periodontal oral cavity, only few studies have been conducted to investigate the changes in oral microorganisms during smoking cessation. The purpose of this study was to investigate the changes of bacteria in saliva and gingival crevicular fluid (GCF) over a period of one year among 11 smokers trying to quit smoking.METHODS: Eleven smokers trying to quit smoking visited the clinic at baseline, two weeks, two months, four months, six months, and 12 months to give saliva and GCF samples. The amounts of 16S rRNA, Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum subsp. nucleatum, Streptococcus mutans, and Streptococcus sobrinus in saliva and GCF were quantified using real-time polymerase chain reaction TaqMan probe assay. The results were analyzed by nonparametric statistical analysis using Friedman test and Spearman correlation coefficient.RESULTS: After cessation of smoking, the amounts of 16S rRNA corresponding to P. gingivalis, F. nucleatum, P. intermedia, and T. denticola in saliva decreased and then again increased significantly. The amount of F. nucleatum 16S rRNA in GCF decreased significantly after smoking cessation. Positive correlations were observed between 16S rRNA and F. nucleatum and between F. nucleatum and T. denticola in saliva and GCF.CONCLUSION: Even if the number of subjects in this study was small, we suggest that smoking cessation may reduce the total bacterial amount and F. nucleatum in GCF. However, the results regarding changes in the microbial ecosystem due to smoking or smoking cessation were inconsistent. Therefore, further in-depth studies need to be carried out.
Bacteria
;
Bacterial Load
;
Cross-Sectional Studies
;
Ecosystem
;
Fusobacterium nucleatum
;
Gingival Crevicular Fluid
;
Mouth
;
Periodontal Diseases
;
Porphyromonas gingivalis
;
Prevotella intermedia
;
Real-Time Polymerase Chain Reaction
;
Saliva
;
Smoke
;
Smoking Cessation
;
Smoking
;
Streptococcus mutans
;
Streptococcus sobrinus
;
Treponema denticola
10.Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study
Jong Hew PARK ; Yong Gun KIM ; Heung Sik UM ; Si Young LEE ; Jae Kwan LEE ; Beom Seok CHANG
Journal of Dental Rehabilitation and Applied Science 2019;35(3):160-169
PURPOSE: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. MATERIALS AND METHODS: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. RESULTS: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. CONCLUSION: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.
Agar
;
Bacteria
;
Biofilms
;
Cell Wall
;
Centers for Disease Control and Prevention (U.S.)
;
Dihydroergotamine
;
Erythrosine
;
Fusobacterium nucleatum
;
In Vitro Techniques
;
Microscopy, Electron, Scanning
;
Photochemotherapy
;
Streptococcus gordonii
;
Toothbrushing

Result Analysis
Print
Save
E-mail