1.Expression, purification, and characterization of the histidine kinase CarS from Fusobacterium nucleatum.
Zhuting LI ; Xian SHI ; Ruochen FAN ; Lulu WANG ; Tingting BU ; Wei ZHENG ; Xuqiang ZHANG ; Chunshan QUAN
Chinese Journal of Biotechnology 2023;39(4):1596-1608
Fusobacterium nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. The two-component system plays an important role in the regulation and expression of genes related to pathogenic resistance and pathogenicity. In this paper, we focused on the CarRS two-component system of F. nucleatum, and the histidine kinase protein CarS was recombinantly expressed and characterized. Several online software such as SMART, CCTOP and AlphaFold2 were used to predict the secondary and tertiary structure of the CarS protein. The results showed that CarS is a membrane protein with two transmembrane helices and contains 9 α-helices and 12 β-folds. CarS protein is composed of two domains, one is the N-terminal transmembrane domain (amino acids 1-170), the other is the C-terminal intracellular domain. The latter is composed of a signal receiving domain (histidine kinases, adenylyl cyclases, methyl-accepting proteins, prokaryotic signaling proteins, HAMP), a phosphate receptor domain (histidine kinase domain, HisKA), and a histidine kinase catalytic domain (histidine kinase-like ATPase catalytic domain, HATPase_c). Since the full-length CarS protein could not be expressed in host cells, a fusion expression vector pET-28a(+)-MBP-TEV-CarScyto was constructed based on the characteristics of secondary and tertiary structures, and overexpressed in Escherichia coli BL21-Codonplus(DE3)RIL. CarScyto-MBP protein was purified by affinity chromatography, ion-exchange chromatography, and gel filtration chromatography with a final concentration of 20 mg/ml. CarScyto-MBP protein showed both protein kinase and phosphotransferase activities, and the MBP tag had no effect on the function of CarScyto protein. The above results provide a basis for in-depth analysis of the biological function of the CarRS two-component system in F. nucleatum.
Humans
;
Histidine Kinase/metabolism*
;
Fusobacterium nucleatum/metabolism*
;
Automobiles
;
Protein Kinases/genetics*
;
Escherichia coli/metabolism*
;
Colorectal Neoplasms
2.Study of the inflammatory activating process in the early stage of Fusobacterium nucleatum infected PDLSCs.
Yushang WANG ; Lihua WANG ; Tianyong SUN ; Song SHEN ; Zixuan LI ; Xiaomei MA ; Xiufeng GU ; Xiumei ZHANG ; Ai PENG ; Xin XU ; Qiang FENG
International Journal of Oral Science 2023;15(1):8-8
Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.
Humans
;
Fusobacterium nucleatum/metabolism*
;
NF-kappa B/metabolism*
;
Periodontal Ligament/metabolism*
;
Signal Transduction
;
Fusobacterium Infections/pathology*
;
Stem Cells/metabolism*
3.Advances on the treatment of Fusobacterium nucleatum-promoted colorectal cancers using nanomaterials.
Hang WANG ; Xiaoxue HOU ; Jianfeng LIU ; Cuihong YANG
Chinese Journal of Biotechnology 2023;39(9):3670-3680
Fusobacterium nucleatum (Fn) is an oral anaerobic bacterium that has recently been found to colonize on the surface of colorectal cancer cells in humans, and its degree of enrichment is highly negatively correlated with the prognosis of tumor treatment. Numerous studies have shown that Fn is involved in the occurrence and development of colorectal cancer (CRC), and Fn interacts with multiple components in the tumor microenvironment to increase tumor resistance. In recent years, researchers have begun using nanomedicine to inhibit Fn's proliferation at the tumor site or directly target Fn to treat CRC. This review summarizes the mechanism of Fn in promoting CRC and the latest research progress on Fn-related CRC therapy using different nanomaterials. Finally, the applications perspective of nanomaterials in Fn-promoted CRC therapy was prospected.
Humans
;
Colorectal Neoplasms/pathology*
;
Fusobacterium nucleatum/genetics*
;
Base Composition
;
RNA, Ribosomal, 16S
;
Phylogeny
;
Sequence Analysis, DNA
;
Tumor Microenvironment
4.Research progress of correlation between periodontal pathogens and systemic diseases.
Journal of Southern Medical University 2020;40(5):759-764
Periodontal pathogens are the main pathogenic factor of periodontitis. Periodontal pathogens have a large variety of virulence factors such as lipopolysaccharide, fimbriae and proteases, which enables the pathogens to infect periodontal tissues and stimulate the secretion of inflammatory cytokines, causing chronic systemic inflammation. Periodontal pathogens may invade multiple systems such as the circulatory system, immune system, respiratory system and digestive system to cause systematic diseases. Recent studies have shown that periodontal pathogens may have close relations with systemic diseases such as cardiovascular disease, diabetes, rheumatoid arthritis, and cancer. Among the periodontal pathogens, can be found in atherosclerotic plaques to impairing the function of the vascular endothelium; may also increase the level of inflammatory factors such as TNF-α to promote insulin resistance and diabetes. Many of the periodontal pathogens such as , and can be detected in the synovial fluid of rheumatoid arthritis patients, suggesting their involvement in the pathogenesis of rheumatoid arthritis. may cause alterations in the intestinal microbiome in mice and promote the occurrence of intestinal tumors. Herein we review the recent progresses in the relationship between periodontal pathogens and systemic diseases.
Aggregatibacter actinomycetemcomitans
;
Animals
;
Fusobacterium nucleatum
;
Humans
;
Insulin Resistance
;
Periodontitis
;
Porphyromonas gingivalis
;
Prevotella intermedia
5.Prognostic Impact of Fusobacterium nucleatum Depends on Combined Tumor Location and Microsatellite Instability Status in Stage II/III Colorectal Cancers Treated with Adjuvant Chemotherapy
Hyeon Jeong OH ; Jung Ho KIM ; Jeong Mo BAE ; Hyun Jung KIM ; Nam Yun CHO ; Gyeong Hoon KANG
Journal of Pathology and Translational Medicine 2019;53(1):40-49
BACKGROUND: This study aimed to investigate the prognostic impact of intratumoral Fusobacterium nucleatum in colorectal cancer (CRC) treated with adjuvant chemotherapy. METHODS: F. nucleatum DNA was quantitatively measured in a total of 593 CRC tissues retrospectively collected from surgically resected specimens of stage III or high-risk stage II CRC patients who had received curative surgery and subsequent oxaliplatin-based adjuvant chemotherapy (either FOLFOXor CAPOX). Each case was classified into one of the three categories: F. nucleatum–high, –low, or –negative. RESULTS: No significant differences in survival were observed between the F.nucleatum–high and –low/negative groups in the 593 CRCs (p = .671). Subgroup analyses according to tumor location demonstrated that disease-free survival was significantly better in F.nucleatum–high than in –low/negative patients with non-sigmoid colon cancer (including cecal, ascending, transverse, and descending colon cancers; n = 219; log-rank p = .026). In multivariate analysis, F. nucleatum was determined to be an independent prognostic factor in non-sigmoid colon cancers (hazard ratio, 0.42; 95% confidence interval, 0.18 to 0.97; p = .043). Furthermore, the favorable prognostic effect of F. nucleatum–high was observed only in a non-microsatellite instability-high (non-MSI-high) subset of non-sigmoid colon cancers (log-rank p = 0.014), but not in a MSI-high subset (log-rank p = 0.844), suggesting that the combined status of tumor location and MSI may be a critical factor for different prognostic impacts of F. nucleatum in CRCs treated with adjuvant chemotherapy. CONCLUSIONS: Intratumoral F. nucleatum load is a potential prognostic factor in a non-MSI-high/non-sigmoid/non-rectal cancer subset of stage II/III CRCs treated with oxaliplatin-based adjuvant chemotherapy.
Chemotherapy, Adjuvant
;
Colon, Descending
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Disease-Free Survival
;
DNA
;
Fusobacterium nucleatum
;
Fusobacterium
;
Gastrointestinal Microbiome
;
Humans
;
Microsatellite Instability
;
Microsatellite Repeats
;
Multivariate Analysis
;
Prognosis
;
Retrospective Studies
6.Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study
Jong Hew PARK ; Yong Gun KIM ; Heung Sik UM ; Si Young LEE ; Jae Kwan LEE ; Beom Seok CHANG
Journal of Dental Rehabilitation and Applied Science 2019;35(3):160-169
PURPOSE: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. MATERIALS AND METHODS: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. RESULTS: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. CONCLUSION: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.
Agar
;
Bacteria
;
Biofilms
;
Cell Wall
;
Centers for Disease Control and Prevention (U.S.)
;
Dihydroergotamine
;
Erythrosine
;
Fusobacterium nucleatum
;
In Vitro Techniques
;
Microscopy, Electron, Scanning
;
Photochemotherapy
;
Streptococcus gordonii
;
Toothbrushing
7.Relationship of Oral Bacterial Load Over One Year of Smoking Cessation
Sunghyun KIM ; Min Seock SEO ; Soo Jeong HWANG
Journal of Dental Hygiene Science 2019;19(4):213-219
BACKGROUND: Smoking exerts an adverse effect on the periodontal tissue by reorganizing the ecosystem of oral microorganisms and is considered to be an important factor in the development of periodontal disease. Although cross-sectional studies on smokers and non-smokers have been attempted to investigate the microbial differences in periodontal oral cavity, only few studies have been conducted to investigate the changes in oral microorganisms during smoking cessation. The purpose of this study was to investigate the changes of bacteria in saliva and gingival crevicular fluid (GCF) over a period of one year among 11 smokers trying to quit smoking.METHODS: Eleven smokers trying to quit smoking visited the clinic at baseline, two weeks, two months, four months, six months, and 12 months to give saliva and GCF samples. The amounts of 16S rRNA, Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum subsp. nucleatum, Streptococcus mutans, and Streptococcus sobrinus in saliva and GCF were quantified using real-time polymerase chain reaction TaqMan probe assay. The results were analyzed by nonparametric statistical analysis using Friedman test and Spearman correlation coefficient.RESULTS: After cessation of smoking, the amounts of 16S rRNA corresponding to P. gingivalis, F. nucleatum, P. intermedia, and T. denticola in saliva decreased and then again increased significantly. The amount of F. nucleatum 16S rRNA in GCF decreased significantly after smoking cessation. Positive correlations were observed between 16S rRNA and F. nucleatum and between F. nucleatum and T. denticola in saliva and GCF.CONCLUSION: Even if the number of subjects in this study was small, we suggest that smoking cessation may reduce the total bacterial amount and F. nucleatum in GCF. However, the results regarding changes in the microbial ecosystem due to smoking or smoking cessation were inconsistent. Therefore, further in-depth studies need to be carried out.
Bacteria
;
Bacterial Load
;
Cross-Sectional Studies
;
Ecosystem
;
Fusobacterium nucleatum
;
Gingival Crevicular Fluid
;
Mouth
;
Periodontal Diseases
;
Porphyromonas gingivalis
;
Prevotella intermedia
;
Real-Time Polymerase Chain Reaction
;
Saliva
;
Smoke
;
Smoking Cessation
;
Smoking
;
Streptococcus mutans
;
Streptococcus sobrinus
;
Treponema denticola
8.Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells
Yuri SONG ; Hyun Ah LEE ; Hee Sam NA ; Jin CHUNG
International Journal of Oral Biology 2018;43(4):217-222
Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of IL-1β among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.
Adenosine Triphosphate
;
Aggregatibacter actinomycetemcomitans
;
Bacteria
;
Cytokines
;
Down-Regulation
;
Enzyme-Linked Immunosorbent Assay
;
Fusobacterium nucleatum
;
Inflammation
;
Macrophages
;
Microscopy, Confocal
;
Monocytes
;
Muramidase
;
Phagocytes
;
Phagocytosis
;
Porphyromonas gingivalis
;
Potassium Chloride
;
Streptococcus mutans
;
United Nations
9.Effect of Natural Extracts on Oral Care Probiotics Weissella cibaria CMU and Periodontal Pathogens
Ji Eun YEU ; Hyun Jin KIM ; Mi Sun KANG
International Journal of Oral Biology 2018;43(4):193-200
The purpose of this study is to determine if natural extracts could be used as an additive in oral health food made with Weissella cibaria CMU (oraCMU). Natural extracts of green tea, mulberry leaf, licorice, and propolis, which are reported to have antimicrobial activities, were selected and used in this study. The minimum inhibitory concentrations (MIC) of extracts on periodontal pathogens such as Fusobacterium nucleatum and Porphyromonas gingivalis and their synergy effects with oraCMU by the fractional inhibitory concentrations methods were measured. From the results obtained, all the extracts showed no effect on the growth of oraCMU. Green tea extract showed the best antibacterial activity with MIC of 1.8 mg/ml against both F. nucleatum and P. gingivalis. In addition, green tea extract had a synergistic effect with oraCMU against F. nucleatum. Therefore, these results suggested that green tea extract is available as an additive in oral health food made with oraCMU.
Fusobacterium nucleatum
;
Glycyrrhiza
;
Microbial Sensitivity Tests
;
Morus
;
Oral Health
;
Porphyromonas gingivalis
;
Probiotics
;
Propolis
;
Tea
;
Weissella
10.Diagnostic Performance of Intestinal in Colorectal Cancer: A Meta-Analysis.
Bo-Jian PENG ; Chuang-Yu CAO ; Wei LI ; Yong-Jian ZHOU ; Yuan ZHANG ; Yu-Qiang NIE ; Yan-Wen CAO ; Yu-Yuan LI
Chinese Medical Journal 2018;131(11):1349-1356
BackgroundIncreasing evidence has supported the link of intestinal Fusobacterium nucleatum infection to colorectal cancer (CRC). However, the value of F. nucleatum as a biomarker in CRC detection has not been fully defined. In order to reduce the random error and bias of individual research, this meta-analysis aimed to evaluate the diagnostic performance of intestinal F. nucleatum in CRC patients and provide evidence-based data to clinical practice.
MethodsAn article search was performed from PubMed, Embase, Cochrane Library, and Web of Science databases up to December 2017, using the following key words: "Fusobacterium nucleatum", "Fusobacterium spp.", "Fn", "colorectal cancer(s)", "colorectal carcinoma(s)", "colorectal neoplasm(s)", and "colorectal tumor(s)". Articles on relationships between F. nucleatum and CRC were selected according to the preestablished inclusion and exclusion criteria. This meta-analysis was performed using STATA 12.0 software, which included mapping of forest plots, heterogeneity tests, meta-regression, subgroup analysis, sensitivity analysis, and publication bias. The sensitivity, specificity, positive likelihood ratio (LR), negative LR, diagnostic odds ratio (DOR), and their corresponding 95% confidence interval (CI) of each eligible study were summarized.
ResultsFinally, data for 1198 participants (629 CRC and 569 healthy controls) in 10 controlled studies from seven articles were included. The summary receiver operator characteristic curve was mapped. The diagnostic performance of intestinal F. nucleatum infection on CRC was as follows: the area under the curve: 0.86 (95% CI: 0.83-0.89), the pooled sensitivity: 0.81 (95% CI: 0.64-0.91), specificity: 0.77 (95% CI: 0.59-0.89), and DOR: 14.00 (95% CI: 9.00-22.00).
ConclusionIntestinal F. nucleatum is a valuable marker for CRC diagnosis.
Colonic Neoplasms ; microbiology ; Colorectal Neoplasms ; microbiology ; Fusobacterium nucleatum ; physiology ; Humans ; Intestines ; microbiology ; pathology

Result Analysis
Print
Save
E-mail