1.Recent progress in ergothioneine of edible fungi.
Linlei YANG ; Zhenhui SHEN ; Xiangying LUO ; Rongping LI ; Rongchun LI
Chinese Journal of Biotechnology 2025;41(2):574-587
Ergothioneine is a natural antioxidant known for its potent anti-inflammatory and antioxidative properties. It has been applied in various sectors such as food, cosmetics, and pharmaceuticals. Edible fungi, both wild and cultivated, stand as the primary natural sources capable of synthesizing ergothioneine. This paper reviews the research progress in the content, physiological functions, extraction and detection methods, synthetic genes and pathways, mycelium fermentation, and engineering strain construction for ergothioneine production. The aim is to provide a comprehensive reference for advancing the research and industrial development related to ergothioneine in edible fungi.
Ergothioneine/isolation & purification*
;
Fungi/genetics*
;
Antioxidants/metabolism*
;
Fermentation
2.Research progress in the fungal bioluminescence pathway.
Lei LÜ ; Ke CHENG ; Zhitao XU ; Shijie AN ; Dang XU ; Hao DU
Chinese Journal of Biotechnology 2025;41(7):2545-2558
The fungal bioluminescence pathway (FBP) catalyzes the oxidation of endogenous caffeic acid to produce green bioluminescence through an enzymatic cascade. Genetic engineering of FBP into plants creates autoluminescent specimens that circumvent the substrate limitations of conventional reporter systems. These transgenic plants serve dual functions as aesthetic displays and versatile biosensing platforms, enabling applications in real-time gene expression monitoring, continuous environmental surveillance, and non-invasive bioimaging, offering novel opportunities for horticultural production, environmental conservation, and bioengineering applications. This review synthesizes current advances in plant FBP engineering and explores how machine learning approaches can optimize autoluminescent phenotypes, thereby accelerating innovation in agricultural biotechnology, environmental sensing, and synthetic biology applications.
Fungi/genetics*
;
Plants, Genetically Modified/metabolism*
;
Genetic Engineering
;
Biosensing Techniques
;
Luminescent Measurements
;
Caffeic Acids/metabolism*
;
Luminescence
3.Soil carbon and nitrogen dynamics affect bacterial and fungal communities and their interactions: a review.
Xinyuan LIU ; Yue LI ; Ziyan WEI ; Zhujun WANG
Chinese Journal of Biotechnology 2025;41(10):3701-3718
The escalating pressure from global population growth, climate change, and resource consumption is intensifying the burden on traditional agricultural production. Against this backdrop, soil degradation and pollution present increasingly severe challenges, creating a vicious cycle with rising food demands. Maintaining soil health and its ecosystem services has thus become a critical prerequisite for achieving sustainable agriculture in the future. This review explores the impacts of soil carbon (C) and nitrogen (N) dynamics on soil microbial communities and their interactions. Soil C and N are key determinants of microbial diversity and community structure, intrinsically linked to soil C/N cycling, crop productivity, and ecological balance. Environmental factors such as nitrogen fertilizer application, organic matter amendment application, litter decomposition, elevated CO2 concentrations, and nitrogen deposition significantly influence soil C and N dynamics. Changes in soil C and N content regulate microbial community dynamics and the synergistic, competitive, and antagonistic interactions among microorganisms. Meanwhile, microbial communities actively respond to alterations in soil C and N availability. The resulting shifts in microbial communities and their interactions subsequently regulate soil C/N cycling and ecosystem stability, ultimately influencing ecosystem functions. By elucidating the mechanisms underlying soil carbon-nitrogen-microbial interactions, this review significantly advances our understanding of soil ecosystem responses and feedback mechanisms in the context of global change, while also providing crucial practical guidance for enhancing soil fertility and promoting sustainable agricultural development through microbial regulation.
Soil Microbiology
;
Nitrogen/metabolism*
;
Carbon/metabolism*
;
Soil/chemistry*
;
Bacteria/growth & development*
;
Fungi/metabolism*
;
Ecosystem
;
Fertilizers
;
Agriculture
4.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
Animals
;
Cattle
;
Neocallimastigales/metabolism*
;
Anaerobiosis
;
Rumen/microbiology*
;
Propionates/metabolism*
;
Isobutyrates/metabolism*
;
Cellulose/metabolism*
;
Fungi
;
Starch/metabolism*
;
Glucose/metabolism*
;
Acetates
;
Sucrose/metabolism*
;
Cellulases
;
Cellulase
5.Progress in the production of lignocellulolytic enzyme systems using Penicillium species.
Guodong LIU ; Liwei GAO ; Yinbo QU
Chinese Journal of Biotechnology 2021;37(3):1058-1069
The efficient production of lignocellulolytic enzyme systems is an important support for large-scale biorefinery of plant biomass. On-site production of lignocellulolytic enzymes could increase the economic benefits of the process by lowering the cost of enzyme usage. Penicillium species are commonly found lignocellulose-degrading fungi in nature, and have been used for industrial production of cellulase preparations due to their abilities to secrete complete and well-balanced lignocellulolytic enzyme systems. Here, we introduce the reported Penicillium species for cellulase production, summarize the characteristics of their enzymes, and describe the strategies of strain engineering for improving the production and performance of lignocellulolytic enzymes. We also review the progress in fermentation process optimization regarding the on-site production of lignocellulolytic enzymes using Penicillium species, and suggest prospect of future work from the perspective of building a "sugar platform" for the biorefinery of lignocellulosic biomass.
Biomass
;
Cellulase/metabolism*
;
Fermentation
;
Fungi/metabolism*
;
Lignin/metabolism*
;
Penicillium
6.Study on the secondary metabolites of grasshopper-derived fungi Arthrinium sp. NF2410.
Wei LI ; Jing WEI ; Dao-Ying CHEN ; Mei-Jing WANG ; Yang SUN ; Fang-Wen JIAO ; Rui-Hua JIAO ; Ren-Xiang TAN ; Hui-Ming GE
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):957-960
Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.
Anhydrides/pharmacology*
;
Animals
;
Biological Products/pharmacology*
;
Enzyme Inhibitors/pharmacology*
;
Fungi/chemistry*
;
Grasshoppers/microbiology*
;
Molecular Structure
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors*
;
Secondary Metabolism
7.Isolation and identification of endophytic fungi producing harpagoside and harpagide from Scrophularia ningpoensis.
Zhan-Yun SHEN ; Bo ZHU ; Quan-Long ZHANG ; Lu-Ping QIN
China Journal of Chinese Materia Medica 2019;44(10):2046-2050
The endophytic fungi from root,main stem,branch and leaf of Scrophularia ningpoensis were isolated from Zhejiang,whether these strains could yield harpagide or harpagoside were tested by HPLC and LC-MS. According to the morphological characteristic and the similarity of the nucleotide sequence of internal transcribed spacer( ITS) between r DNAs,the strains producing harpagide or harpagoside were identified. The results showed that 210 strains were isolated from the samples,which were classified into 9 orders,13 families and 17 genera by morphological study. Harpagide was detected in endogenous fungi ZJ17 and harpagoside was detected in endogenous fungi ZJ25 by HPLC coupled with LC-MS. ZJ17 was identified as Alternaria alternate and ZJ25 was identified as A.gaisen by its morphology and authenticated by ITS( ITS4 and ITS5 regions and the intervening 5. 8 S rDNA region).
China
;
DNA, Fungal
;
genetics
;
DNA, Ribosomal Spacer
;
genetics
;
Endophytes
;
classification
;
metabolism
;
Fungi
;
classification
;
metabolism
;
Glycosides
;
biosynthesis
;
Iridoid Glycosides
;
metabolism
;
Pyrans
;
metabolism
;
Scrophularia
;
microbiology
8.Inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction.
Ya-Qin ZHOU ; Da-Wei ZHANG ; Li-Ying YU ; Ying WEI ; Hong-Zhen TANG ; Shi-Ling YANG ; Xiao-Ming TAN
China Journal of Chinese Materia Medica 2019;44(9):1808-1813
To determine the inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction,the protein-protein interaction between human immunodeficiency virus type 1( HIV-1) integrase and lens epithelial growth factor p75 protein( LEDGF/p75) was used as a target. The homogeneous time-resolved fluorescence( HTRF) technique was used in the inhibitory activity assay. The results showed that eight endophytic fungi with anti-IN-LEDGF/p75 interaction activity were screened out from fifty-three strains with different morphological characteristic. Among them,106 strain showed strong inhibitory activity against HIV-1 IN-LEDGF/p75 interaction with IC50 value of 5. 23 mg·L-1,and was identified as a potential novel species of Magnaporthaceae family by the analyses of ITS-rDNA,LSU and RPB2 sequences data. This study demonstrated that potential natural active ingredients against the HIV-1 IN-LEDGF/p75 interaction exist in the endophytic fungi of D. versipellis. These results may provide available candidate strain resources for the research and development of new anti-acquired immunodeficiency syndrome drugs.
Berberidaceae
;
microbiology
;
Endophytes
;
Fungi
;
chemistry
;
HIV Integrase
;
metabolism
;
HIV-1
;
drug effects
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Protein Binding
9.Effects of fungi fraction on growth and anti-oxidative activity of Eleutherococcus senticosus.
Shuang ZHANG ; Sheng-Lei GUO ; Qian-Bo WANG ; Yue LIU ; Hong-Wei SHEN ; Zhen-Yue WANG
China Journal of Chinese Materia Medica 2019;44(8):1517-1523
The present study was conducted to explore the effect of endophytic fungi fraction on growth and anti-oxidative activity of Eleutherococcus senticosus. The growth,yield,contents of MDA,and antioxidant activities were assessed in E. senticosus under five fungi fractions,namely BZ,MH,DT,JS,and XFZ. The results showed that fungi fractions and component significantly affected the growth,low concentration of DT fungi fraction significantly increased the biomass of E. senticosus,reduced the MDA content in cells,and the antioxidant activities of the aqueous extracts were superior to the others. The results indicated that low concentration of DT fungi fraction was the optimum fraction to achieve high yield and quality of E. senticosus.
Antioxidants
;
metabolism
;
Eleutherococcus
;
growth & development
;
metabolism
;
Fungi
;
chemistry
;
Malondialdehyde
;
metabolism
;
Oxidative Stress
10.Regulatory mechanism underlying mycelium aggregation during filamentous fungi submerged fermentation.
Ruisang LIU ; Yajie TANG ; Fengwu BAI
Chinese Journal of Biotechnology 2019;35(5):749-758
Filamentous fungi are one of the platforms for producing fermented products. The specific characteristic of their submerged fermentation is the aggregation of mycelia that is affected by environmental conditions, leading to significantly different rheology for fermentation broth. Such a rheological change not only affects the transfer of mass, heat and momentum, but also the biosynthesis of target products and the efficiency of their production. In this article, strategies for morphological regulation of filamentous fungi are reviewed, and the impact of calcium signal transduction and chitin biosynthesis on apical growth of hyphae and branching of mycelia for their aggregation are further commented.
Fermentation
;
Fungi
;
physiology
;
Hot Temperature
;
Mycelium
;
metabolism
;
Rheology

Result Analysis
Print
Save
E-mail