1.Functional Connectivity Encodes Sound Locations by Lateralization Angles.
Renjie TONG ; Shaoyi SU ; Ying LIANG ; Chunlin LI ; Liwei SUN ; Xu ZHANG
Neuroscience Bulletin 2025;41(2):261-271
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment. Previous studies have suggested that there is an auditory "where" pathway in the cortex for processing sound locations. The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding, in which each unilateral region is activated by sounds coming from the contralateral hemifield. However, it is still unclear how these regions interact with each other to form a unified representation of the auditory space. In the present study, we investigated whether functional connectivity in the auditory "where" pathway encoded sound locations during passive listening. Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations (-90°, -45°, 0°, 45°, 90°). We were able to decode sound locations from the functional connectivity patterns of the "where" pathway. Furthermore, we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline. In addition, whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles. Overall, our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns, which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
Humans
;
Sound Localization/physiology*
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Young Adult
;
Functional Laterality/physiology*
;
Adult
;
Brain Mapping
;
Auditory Cortex/physiology*
;
Acoustic Stimulation
;
Auditory Pathways/physiology*
;
Brain/physiology*
2.Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians.
Xinhu JIN ; Lei ZHANG ; Guowei WU ; Xiuyi WANG ; Yi DU
Neuroscience Bulletin 2024;40(12):1843-1857
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Humans
;
Speech Perception/physiology*
;
Music
;
Male
;
Functional Laterality/physiology*
;
Female
;
Aged
;
Adult
;
Young Adult
;
Aging/physiology*
;
Middle Aged
;
Magnetic Resonance Imaging
;
Brain/physiology*
4.The relationship of surgeon handedness and experience on operative duration and hearing improvement in ipsilateral and contralateral otologic surgeries
Philippine Journal of Otolaryngology Head and Neck Surgery 2020;35(2):17-21
Objective: To determine the relationship of the surgeon handedness and operative site laterality on operative duration and hearing improvement in otologic surgery, and to further explore whether this relationship may be related to surgeon experience.
Methods:
Design: Retrospective Cohort
Setting: Tertiary Private Teaching Hospital
Participants: Seventy-three (73) patients aged 18 to 65 years old who underwent primary ear surgery under general anesthesia between January 2016 and December 2019 were retrospectively divided into two groups: 39 contralateral and 34 ipsilateral. The operative durations and hearing improvements were compared using independent t-tests, with consideration of surgeon experience in years further stratifying patients.
Results: There was no significant difference in operative duration, t(71) = 1.14, p = .26, between the contralateral (M = 281.95 minutes, SD = 71.82) and ipsilateral (M = 261.15, SD = 79.26) groups. This same pattern was more pronounced among surgeons with 10+ years of experience although there was also no significant difference in operative time, t(33) = 1.31, p = .19 for both ipsilateral and contralateral surgeries There was no statistically significant difference, t(36) = -0.72, p = .47, in overall mean hearing gain among patients in the contralateral (M = +2.22 dB, SD = 10.54) and ipsilateral (M = +5.12 dB, SD = 14.26) groups. Although the difference was also not statistically significant, t(16) = -1.94, p = .07 for contralateral (M = 0.00, SD = 5.43) and ipsilateral (M = +7.95 dB, SD = 11.52) procedures performed by surgeons with experience of 10 years or more, a mean hearing gain of +7 dB in the ipsilateral group compared to 0 dB in the contralateral group was notable.
Conclusion: This study did not prove that regardless of surgeon experience, right-handed surgeons operating on the right ear and left-handed surgeons operating on the left ear have better ear surgery outcomes of operative duration and hearing improvement compared to right- handed surgeons operating on the left ear and left-handed surgeons operating on the right ear. Future studies on larger samples with more complete data may yet demonstrate this effect.
Functional Laterality
;
otologic surgical procedures
;
hearing
;
operative time
5.The best vein to be accessed based on descriptive study of dorsal metacarpal vein
Muna A SALAMEH ; Amjad T SHATARAT ; Darwish H BADRAN ; Mhmoud A ABU-ABEELEH ; Islam M MASSAD ; Amjad M BANI-HANI
Anatomy & Cell Biology 2019;52(4):390-396
Anatomic Variation
;
Catheterization
;
Female
;
Functional Laterality
;
Hand
;
Health Personnel
;
Humans
;
Jordan
;
Lighting
;
Male
;
Upper Extremity
;
Veins
6.ZNF804A Variation May Affect Hippocampal-Prefrontal Resting-State Functional Connectivity in Schizophrenic and Healthy Individuals.
Yuyanan ZHANG ; Hao YAN ; Jinmin LIAO ; Hao YU ; Sisi JIANG ; Qi LIU ; Dai ZHANG ; Weihua YUE
Neuroscience Bulletin 2018;34(3):507-516
The ZNF804A variant rs1344706 has consistently been associated with schizophrenia and plays a role in hippocampal-prefrontal functional connectivity during working memory. Whether the effect exists in the resting state and in patients with schizophrenia remains unclear. In this study, we investigated the ZNF804A polymorphism at rs1344706 in 92 schizophrenic patients and 99 healthy controls of Han Chinese descent, and used resting-state functional magnetic resonance imaging to explore the functional connectivity in the participants. We found a significant main effect of genotype on the resting-state functional connectivity (RSFC) between the hippocampus and the dorsolateral prefrontal cortex (DLPFC) in both schizophrenic patients and healthy controls. The homozygous ZNF804A rs1344706 genotype (AA) conferred a high risk of schizophrenia, and also exhibited significantly decreased resting functional coupling between the left hippocampus and right DLPFC (F(2,165) = 13.43, P < 0.001). The RSFC strength was also correlated with cognitive performance and the severity of psychosis in schizophrenia. The current findings identified the neural impact of the ZNF804A rs1344706 on hippocampal-prefrontal RSFC associated with schizophrenia.
Adult
;
Analysis of Variance
;
Female
;
Functional Laterality
;
genetics
;
Genotype
;
Hippocampus
;
diagnostic imaging
;
Humans
;
Image Processing, Computer-Assisted
;
Kruppel-Like Transcription Factors
;
genetics
;
Magnetic Resonance Imaging
;
Male
;
Neural Pathways
;
diagnostic imaging
;
Neuropsychological Tests
;
Oxygen
;
blood
;
Polymorphism, Single Nucleotide
;
genetics
;
Prefrontal Cortex
;
diagnostic imaging
;
Psychiatric Status Rating Scales
;
Schizophrenia
;
diagnostic imaging
;
genetics
;
physiopathology
;
Severity of Illness Index
;
Young Adult
7.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Adrenergic Agents
;
toxicity
;
Animals
;
Apomorphine
;
pharmacology
;
Disease Models, Animal
;
Dopamine Agonists
;
pharmacology
;
Electroacupuncture
;
methods
;
Functional Laterality
;
drug effects
;
Male
;
Medial Forebrain Bundle
;
injuries
;
Motor Activity
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidopamine
;
toxicity
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Rats
;
Rats, Sprague-Dawley
;
Subthalamic Nucleus
;
drug effects
;
metabolism
;
pathology
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Up-Regulation
;
drug effects
;
physiology
;
Vesicular Glutamate Transport Protein 1
;
metabolism
8.Intervention Effect of Repetitive TMS on Behavioral Adjustment After Error Commission in Long-Term Methamphetamine Addicts: Evidence From a Two-Choice Oddball Task.
Qiongdan LIANG ; Jia LIN ; Jiemin YANG ; Xiang LI ; Yijiang CHEN ; Xianxin MENG ; Jiajin YUAN
Neuroscience Bulletin 2018;34(3):449-456
Behavioral adjustment plays an important role in the treatment and relapse of drug addiction. Nonetheless, few studies have examined behavioral adjustment and its plasticity following error commission in methamphetamine (METH) dependence, which is detrimental to human health. Thus, we investigated the behavioral adjustment performance following error commission in long-term METH addicts and how it varied with the application of repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC). Twenty-nine male long-term METH addicts (for > 3 years) were randomly assigned to high-frequency (10 Hz, n = 15) or sham (n = 14) rTMS of the left DLPFC during a two-choice oddball task. Twenty-six age-matched, healthy male adults participated in the two-choice oddball task pretest to establish normal performance for comparison. The results showed that 10 Hz rTMS over the left DLPFC significantly decreased the post-error slowing effect in response times of METH addicts. In addition, the 10 Hz rTMS intervention remarkably reduced the reaction times during post-error trials but not post-correct trials. While the 10 Hz rTMS group showed a more pronounced post-error slowing effect than the healthy participants during the pretest, the post-error slowing effect in the posttest of this sample was similar to that in the healthy participants. These results suggest that high-frequency rTMS over the left DLPFC is a useful protocol for the improvement of behavioral adjustment after error commission in long-term METH addicts.
Adjustment Disorders
;
etiology
;
therapy
;
Adult
;
Amphetamine-Related Disorders
;
complications
;
therapy
;
Case-Control Studies
;
Central Nervous System Stimulants
;
adverse effects
;
Choice Behavior
;
physiology
;
Functional Laterality
;
Humans
;
Male
;
Methamphetamine
;
adverse effects
;
Middle Aged
;
Prefrontal Cortex
;
physiology
;
Reaction Time
;
physiology
;
Transcranial Magnetic Stimulation
;
methods
;
Young Adult
9.Volumetric Changes in Hippocampal Subregions and Memory Performance in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.
Caihong JI ; Lujia ZHU ; Cong CHEN ; Shuang WANG ; Leilei ZHENG ; Hong LI
Neuroscience Bulletin 2018;34(2):389-396
In the present study we explored the different patterns of volumetric atrophy in hippocampal subregions of patients with left and right mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Meanwhile, the memory impairment patterns in Chinese-speaking TLE-HS patients and potential influencing factors were also determined. TLE-HS patients (21 left and 17 right) and 21 healthy controls were recruited to complete T2-weighted imaging and verbal/nonverbal memory assessment. The results showed that both left and right TLE-HS patients had overall reduced hippocampal subregion volumes on the sclerotic side, and cornu ammonis sectors (CA1) exhibited maximum atrophy. The verbal memory of left TLE-HS patients was significantly impaired (P < 0.001) and was not associated with the volumes of the left hippocampal subregions. Verbal or nonverbal memory impairment was not found in the patients with right TLE-HS. These results suggested that the atrophy of hippocampal subregion volumes cannot account for the verbal memory impairment, which might be related to the functional network.
Adult
;
Asian Continental Ancestry Group
;
Atrophy
;
pathology
;
Epilepsy, Temporal Lobe
;
complications
;
pathology
;
Female
;
Functional Laterality
;
Hippocampus
;
pathology
;
Humans
;
Male
;
Memory Disorders
;
etiology
;
pathology
;
Sclerosis
;
pathology
;
Young Adult
10.Proteomic Analysis of the Hippocampus in Mouse Models of Trigeminal Neuralgia and Inescapable Shock-Induced Depression.
Qing-Huan GUO ; Qing-He TONG ; Ning LU ; Hong CAO ; Liu YANG ; Yu-Qiu ZHANG
Neuroscience Bulletin 2018;34(1):74-84
To investigate the behavioral and biomolecular similarity between neuralgia and depression, a trigeminal neuralgia (TN) mouse model was established by constriction of the infraorbital nerve (CION) to mimic clinical trigeminal neuropathic pain. A mouse learned helplessness (LH) model was developed to investigate inescapable foot-shock-induced psychiatric disorders like depression in humans. Mass spectrometry was used to assess changes in the biomolecules and signaling pathways in the hippocampus from TN or LH mice. TN mice developed not only significant mechanical allodynia but also depressive-like behaviors (mainly behavioral despair) at 2 weeks after CION, similar to LH mice. MS analysis demonstrated common and distinctive protein changes in the hippocampus between groups. Many protein function families (such as cell-to-cell signaling and interaction, and cell assembly and organization,) and signaling pathways (e.g., the Huntington's disease pathway) were involved in chronic neuralgia and depression. Together, these results demonstrated that the LH and TN models both develop depressive-like behaviors, and revealed the involvement of many psychiatric disorder-related biomolecules/pathways in the pathogenesis of TN and LH.
Animals
;
Avoidance Learning
;
physiology
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Depression
;
etiology
;
pathology
;
Disease Models, Animal
;
Electroshock
;
adverse effects
;
Functional Laterality
;
Helplessness, Learned
;
Hindlimb Suspension
;
psychology
;
Hippocampus
;
metabolism
;
Male
;
Mass Spectrometry
;
Mice
;
Mice, Inbred C57BL
;
Orbit
;
innervation
;
Pain Measurement
;
Proteomics
;
methods
;
Reaction Time
;
physiology
;
Signal Transduction
;
physiology
;
Trigeminal Neuralgia
;
etiology
;
pathology


Result Analysis
Print
Save
E-mail