1.Design and Implementation of Non-Invasive Hemodynamic Monitoring System Based on Impedance Cardiogram Method.
Fuhao KANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(1):80-88
Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( P<0.001), 0.948 ( P<0.001), and 0.933 ( P<0.001), respectively, verifying that the designed system has high accuracy and reliability.
Cardiography, Impedance/methods*
;
Humans
;
Hemodynamic Monitoring/methods*
;
Equipment Design
;
Signal Processing, Computer-Assisted
;
Hemodynamics
;
Algorithms
;
Monitoring, Physiologic/methods*
;
Electrocardiography
2.Development of a Microstream End-Tidal Carbon Dioxide Monitoring System with Integrated Gas Circuit.
Yanan LIU ; Xuedong SONG ; Qi YIN ; Fuhao KANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(2):204-211
End-tidal carbon dioxide monitoring is an important means of evaluating human lung function and is widely used in fields such as clinical emergency treatment and cardiopulmonary resuscitation. This paper develops a microstream end-tidal carbon dioxide monitoring system. It adopts an integrated gas circuit design to further reduce the size of the equipment. The system uses the method of calculating the root mean square (RMS) of differential pressure signals to regulate the gas circuit flow, enabling the system to stably operate at a flow state of 30 mL/min. In addition, by simultaneously detecting multiple environmental parameters such as temperature and pressure, the system realizes system state monitoring and gas parameter compensation. The test results show that various indicators of the system meet the requirements of relevant standards, laying a good foundation for subsequent engineering applications.
Carbon Dioxide/analysis*
;
Equipment Design
;
Monitoring, Physiologic/methods*
;
Humans
3.Sixteen-Channel Multimodal High-Precision Transcranial Electrical Stimulation System Development.
Yan HANG ; Qi YIN ; Lin HUANG ; Fuhao KANG ; Yanan LIU ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(4):435-443
This paper introduces a 16-channel multimodal high-precision transcranial electrical stimulation system specifically for non-invasive brain stimulation. This system added TMCS mixed four traditional stimulation modes with TACS, TDCS, TPCS and TRNS. By designing a compensated high-precision constant current source, the constant stimulation current with an accuracy of 0.03 mA in the range of ±2 mA and the stimulation frequency of 50~200 kHz with low frequency of 0~4 kHz (high frequency of 0.1 Hz) are realized. In TACS stimulation mode, there are five adjustable wave forms: triangular wave, sine wave, sawtooth wave, square wave and mixed wave. The system has dual closed-loop control overcurrent detection and simultaneous real-time electrode contact impedance detection. After relevant tests and verification, the system has good stimulation accuracy, high safety and reliability. Compared with the existing products at home and abroad, it features lower cost, richer stimulation mode and waveforms, demonstrating a certain market application value.
Transcranial Direct Current Stimulation/instrumentation*
;
Equipment Design
;
Humans
4.Research Progress on End-Tidal Carbon Dioxide Detection Technology Based on Non-Dispersive Infrared Method
Yanan LIU ; Mingyue LI ; Fuhao KANG ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2024;48(2):203-207
The concentration of end-tidal carbon dioxide is one of the important indicators for evaluating whether the human respiratory system is normal.Accurately detecting of end-tidal carbon dioxide is of great significance in clinical practice.With the continuous promotion of the localization of end-tidal carbon dioxide monitoring technology,its application in clinical practice in China has become increasingly widespread in recent years.The study is based on the non-dispersive infrared method and comprehensively elaborates on the detection principle,gas sampling methods,key technologies,and technological progress of end-tidal carbon dioxide detection technology.It comprehensively introduces the current development status of this technology and provides reference for application promotion and further improvement.
5.Development of Wireless Wearable Sleep Monitoring System Based on EEG Signal
Fuhao KANG ; Jieying SHAN ; Zexi LI ; Yanan LIU ; Jilun YE ; Xu ZHANG ; Chunsheng LIU ; Fan WANG
Chinese Journal of Medical Instrumentation 2024;48(2):173-178
A wireless wearable sleep monitoring system based on EEG signals is developed.The collected EEG signals are wirelessly sent to the PC or mobile phone Bluetooth APP for real-time display.The system is small in size,low in power consumption,and light in weight.It can be worn on the patient's forehead and is comfortable.It can be applied to home sleep monitoring scenarios and has good application value.The key performance indicators of the system are compared with the industry-related medical device measurement standards,and the measurement results are better than the special standards.

Result Analysis
Print
Save
E-mail