1.Nutritional supply status of school meals for primary and secondary students in three cities of Henan Province
LI Shan, YANG Li, HE Qidong, CAO Linlin, CHEN Xiaolong, LIU Bingrui, FENG Yinhua, FU Pengyu
Chinese Journal of School Health 2025;46(1):50-52
Objective:
To assess the nutritional supply status of school meals for primary and secondary school students in Henan Province, so as to provide a basis for scientific guidance of school meals.
Methods:
During 2021-2023, 115 lunch and dinner samples were collected from 25 primary and secondary schools in Zhoukou, Anyang and Luoyang of Henan Province by a direct selection method, and 13 nutrients were determined for each sample. The nutrient supply was evaluated based on Nutrition Guidelines of School Meals and Reference Intake of Dietary Nutrients for Chinese Residents (2023 Edition). Mann-Whitney U test was used to compare the differences of nutritional supply between urban and rural schools.
Results:
The median values for energy (709.77 kcal,1 kcal=4.18 kJ), fat energy supply ratio (0.27) and carbohydrate energy supply ratio (0.55) in the 66 lunches and dinners from primary school were within the recommended range. The supply of protein (28.39 g) and sodium (1 464.59 mg) was excessive. The median values of zinc (2.62 mg) and dietary fiber (5.19 g) were lower than the reference values. No statistically significant differences were observed in the supply of 13 nutrients between urban and rural primary schools( U = 427.00 -633.00, P > 0.05 ). Among 49 samples from secondary schools, the median value of energy supply (930.02 kcal), carbohydrate energy ratio ( 0.54 ) and fat energy supply ratio(0.25) were within the recommended range; and the median values of protein (38.82 g) and sodium (2 556.80 mg) were higher than the standard; and the median values of calcium (250.32 mg) and vitamin B1 (0.16 mg) were lower than the standard. Additionally, the differences in the level of vitamin B2 ( U =372.00) and zinc ( U =375.00) between the urban and rural secondary schools were statistically significant ( P <0.05).
Conclusion
Nutrient supply of primary and secondary school meals in three cities of Henan Province is inadequate and imbalanced, and the recipe need to be further optimized and improved.
2.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
4.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
5.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
7.Survival predictor in emergency resuscitative thoracotomy for blunt trauma patients: Insights from a Chinese trauma center.
Shan LIU ; Lin LING ; Yong FU ; Wen-Chao ZHANG ; Yong-Hu ZHANG ; Qing LI ; Liang ZENG ; Jun HU ; Yong LUO ; Wen-Jie LIU
Chinese Journal of Traumatology 2025;28(4):288-293
PURPOSE:
Emergency resuscitative thoracotomy (ERT) is a final salvage procedure for critically injured trauma patients. Given its low success rate and ambiguous indications, its use in blunt trauma scenarios remains highly debated. Consequently, our study seeks to ascertain the overall survival rate of ERT in blunt trauma patients and determine which patients would benefit most from this procedure.
METHODS:
A retrospective case-control study was conducted for this research. Blunt trauma patients who underwent ERT between January 2020 and December 2023 in our trauma center were selected for analysis, with the endpoint outcome being in-hospital survival, divided into survival and non-survival groups. Inter-group comparisons were conducted using Chi-square and Fisher's exact tests, the Kruskal-Wallis test, Student's t-test, or the Mann-Whitney U test. Univariate and multivariate logistic regression analyses were conducted to assess potential predictors of survival. Then, the efficacy of the predictors was assessed through sensitivity and specificity analysis.
RESULTS:
A total of 33 patients were included in the study, with 4 survivors (12.12%). Multivariate logistic regression analysis indicated a significant association between cardiac tamponade and survival, with an adjusted odds ratio of 33.4 (95% CI: 1.31 - 850.00, p = 0.034). Additionally, an analysis of sensitivity and specificity, targeting cardiac tamponade as an indicator for survivor identification, showed a sensitivity rate of 75.0% and a specificity rate of 96.6%.
CONCLUSION
The survival rate among blunt trauma patients undergoing ERT exceeds traditional expectations, suggesting that select individuals with blunt trauma can significantly benefit from the procedure. Notably, those presenting with cardiac tamponade are identified as the subgroup most likely to derive substantial benefits from ERT.
Adult
;
Female
;
Humans
;
Male
;
Middle Aged
;
Case-Control Studies
;
China
;
Logistic Models
;
Resuscitation/mortality*
;
Retrospective Studies
;
Survival Rate
;
Thoracotomy/methods*
;
Trauma Centers/statistics & numerical data*
;
Wounds, Nonpenetrating/surgery*
8.Deep learning algorithms for intelligent construction of a three-dimensional maxillofacial symmetry reference plane.
Yujia ZHU ; Hua SHEN ; Aonan WEN ; Zixiang GAO ; Qingzhao QIN ; Shenyao SHAN ; Wenbo LI ; Xiangling FU ; Yijiao ZHAO ; Yong WANG
Journal of Peking University(Health Sciences) 2025;57(1):113-120
OBJECTIVE:
To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.
METHODS:
Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm. These were divided into a training set (1 400 cases), a validation set (200 cases), and an internal test set (200 cases). The MDGR-Net model constructed feature vectors for key points in both original and mirror point clouds (X, Y), established correspondences between key points in the X and Y point clouds based on these feature vectors, and calculated rotation and translation matrices using singular value decomposition (SVD). Utilizing the MDGR-Net model, intelligent registration of the original and mirror point clouds were achieved, resulting in a combined point cloud. The principal component analysis (PCA) algorithm was applied to this combined point cloud to obtain the symmetry reference plane associated with the MDGR-Net methodology. Model evaluation for the translation and rotation matrices on the test set was performed using the coefficient of determination (R2). Angle error evaluations for the three-dimensional maxillofacial symmetry reference planes were constructed using the MDGR-Net-associated method and the "ground truth" iterative closest point (ICP)-associated method were conducted on 200 cases in the internal test set and 40 cases in an external test set.
RESULTS:
Based on testing with the three-dimensional maxillofacial data from the 200-case internal test set, the MDGR-Net model achieved an R2 value of 0.91 for the rotation matrix and 0.98 for the translation matrix. The average angle error on the internal and external test sets were 0.84°±0.55° and 0.58°±0.43°, respectively. The construction of the three-dimensional maxillofacial symmetry reference plane for 40 clinical cases took only 3 seconds, with the model performing optimally in the patients with skeletal Class Ⅲ malocclusion, high angle cases, and Angle Class Ⅲ orthodontic patients.
CONCLUSION
This study proposed the MDGR-Net association method based on intelligent point cloud registration as a novel solution for constructing three-dimensional maxillofacial symmetry reference planes in clinical dental applications, which can significantly enhance diagnostic and therapeutic efficiency and outcomes, while reduce expert dependence.
Humans
;
Deep Learning
;
Algorithms
;
Imaging, Three-Dimensional/methods*
;
Male
;
Female
;
Maxilla/diagnostic imaging*
;
Adult
10.Development of cardiovascular clinical research data warehouse and real-world research.
Dan-Dan LI ; Ya-Ni YU ; Zhi-Jun SUN ; Chang-Fu LIU ; Tao CHEN ; Dong-Kai SHAN ; Xiao-Dan TUO ; Jun GUO ; Yun-Dai CHEN
Journal of Geriatric Cardiology 2025;22(7):678-689
BACKGROUND:
Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment. However, limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress. In response, our research team has embarked on the development of a specialized clinical research database for cardiology, thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.
METHODS:
The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021. It included comprehensive data on patients' basic information, medical history, non-invasive imaging studies, laboratory test results, as well as peri-procedural information related to interventional surgeries, extracted from the Hospital Information System. Additionally, an innovative artificial intelligence (AI)-powered interactive follow-up system had been developed, ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up, thereby achieving comprehensive data management throughout the entire care continuum for high-risk patients.
RESULTS:
This database integrates extensive cross-sectional and longitudinal patient data, with a focus on higher-risk acute coronary syndrome patients. It achieves the integration of structured and unstructured clinical data, while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency. It creates a comprehensive patient view, thereby improving diagnostic and follow-up quality, and provides high-quality data to support clinical research. Despite limitations in unstructured data standardization and biological sample integrity, the database's development is accompanied by ongoing optimization efforts.
CONCLUSION
The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research, which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes. It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.


Result Analysis
Print
Save
E-mail