1.Effects of electroacupuncture on cognitive impairment and mitophagy mediated by KIF5A/Miro1 pathway in Parkinson's disease mice.
Mengzhu LI ; Jiafan CHEN ; Mengxuan CHEN ; Haiyan LI ; Zhenyi ZHANG ; Da GAO ; Weicong ZENG ; Lijun ZHAO ; Meiling ZHU
Chinese Acupuncture & Moxibustion 2025;45(8):1111-1119
OBJECTIVE:
To explore the improvement effect of electroacupuncture (EA) based on Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) on cognitive impairment in mice with Parkinson's disease (PD), and to explore its regulatory mechanisms on the kinesin family member 5A (KIF5A)/mitochondrial Rho GTPase 1 (Miro1) pathway and mitophagy in prefrontal cortical neurons.
METHODS:
A total of 70 male C57BL/6J mice of clean grade were randomly divided into a normal group (12 mice), a sham operation group (12 mice), and a model pre-screening group (46 mice). Unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle was adopted to establish the PD model in the model pre-screening group. Twenty-four mice after successful modeling were randomly selected and divided into a model group and an EA group, 12 mice in each one. In the EA group, acupuncture was applied at "Shuigou" (GV26) and bilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6), ipsilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6) were connected to EA respectively, with disperse-dense wave, 5 Hz/20 Hz in frequency, 0.5 mA in current intensity, 20 min a time, 6 times a week for 30 days. Cognitive function was assessed by Y-maze and Morris water maze tests; morphology of prefrontal cortex was observed by H.E. staining; reactive oxygen species (ROS) level in prefrontal cortex was detected by fluorescence probe method; mitochondrial morphology and autophagosome ultrastructure were observed by transmission electron microscopy; the mRNA expression of tyrosine hydroxylase (TH) was detected by quantitative real-time PCR; the protein expression of TH, KIF5A, Miro1, p62, Parkin and PTEN induced kinase 1 (PINK1) was detected by Western blot.
RESULTS:
Compared with the sham operation group, both the model group and the EA group exhibited increased rotation number of per minute (P<0.001). Compared with the sham operation group, in the model group, the novel arm exploration time of Y-maze test was shortened (P<0.001), the escape latency of Morris water maze test was prolonged (P<0.05) and the platform crossing number of Morris water maze test was reduced (P<0.01); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was increased (P<0.001), and mitochondrial autophagosomes could be observed; in the prefrontal cortex, the relative expression of ROS was increased (P<0.001), the protein and mRNA expression of TH was decreased (P<0.001), the protein expression of Miro1, PINK1, Parkin was increased (P<0.001, P<0.01), the protein expression of KIF5A and p62 was decreased (P<0.001). Compared with the model group, in the EA group, the novel arm exploration time of Y-maze test was prolonged (P<0.01), the escape latency of Morris water maze test was shortened (P<0.05) and the platform crossing number of Morris water maze test was increased (P<0.05); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was decreased (P<0.001), and the number of mitochondrial autophagosomes reduced and the mitochondrial morphology was improved; in the prefrontal cortex, the relative expression of ROS was decreased (P<0.01), the protein and mRNA expression of TH was increased (P<0.001, P<0.01), the protein expression of Miro1, PINK1, Parkin was decreased (P<0.001, P<0.01, P<0.05), the protein expression of KIF5A and p62 was increased (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao electroacupuncture effectively alleviates cognitive impairment and damage of neuronal function in PD mice, its mechanism may be related to the regulation of KIF5A/Miro1 pathway, hence reducing the mitophagy in prefrontal cortical neurons.
Animals
;
Electroacupuncture
;
Male
;
Mice
;
Parkinson Disease/physiopathology*
;
Cognitive Dysfunction/psychology*
;
Kinesins/genetics*
;
Humans
;
Mitophagy
;
Mice, Inbred C57BL
;
rho GTP-Binding Proteins/genetics*
;
Mitochondria/genetics*
;
Prefrontal Cortex/metabolism*
2.Fatigue driving detection based on prefrontal electroencephalogram asymptotic hierarchical fusion network.
Jiazheng SUN ; Weimin LI ; Ningling ZHANG ; Cai CHEN ; Shengzhe WANG ; Fulai PENG
Journal of Biomedical Engineering 2025;42(3):544-551
Fatigue driving is one of the leading causes of traffic accidents, posing a significant threat to drivers and road safety. Most existing methods focus on studying whole-brain multi-channel electroencephalogram (EEG) signals, which involve a large number of channels, complex data processing, and cumbersome wearable devices. To address this issue, this paper proposes a fatigue detection method based on frontal EEG signals and constructs a fatigue driving detection model using an asymptotic hierarchical fusion network. The model employed a hierarchical fusion strategy, integrating an attention mechanism module into the multi-level convolutional module. By utilizing both cross-attention and self-attention mechanisms, it effectively fused the hierarchical semantic features of power spectral density (PSD) and differential entropy (DE), enhancing the learning of feature dependencies and interactions. Experimental validation was conducted on the public SEED-VIG dataset. The proposed model achieved an accuracy of 89.80% using only four frontal EEG channels. Comparative experiments with existing methods demonstrate that the proposed model achieves high accuracy and superior practicality, providing valuable technical support for fatigue driving monitoring and prevention.
Humans
;
Electroencephalography/methods*
;
Automobile Driving
;
Fatigue/diagnosis*
;
Accidents, Traffic/prevention & control*
;
Signal Processing, Computer-Assisted
;
Neural Networks, Computer
;
Algorithms
;
Prefrontal Cortex/physiology*
3.Prefrontal dysfunction and mismatch negativity in adolescent depression: A multimodal fNIRS-ERP study.
Hongyi SUN ; Lin ZHANG ; Jing LI ; Zhenhua LI ; Jiaxi HUANG ; Zhong ZHENG ; Ke ZOU
Journal of Biomedical Engineering 2025;42(4):701-706
Early identification of adolescent depression requires objective biomarkers. This study investigated the functional near-infrared spectroscopy (fNIRS) activation patterns and mismatch negativity (MMN) characteristics in adolescents with first-episode mild-to-moderate depression. We enrolled 33 patients and 33 matched healthy controls, measuring oxyhemoglobin (Oxy-Hb) concentration in the frontal cortex during verbal fluency tasks via fNIRS, and recording MMN latency/amplitude at Fz/Cz electrodes using event-related potentials (ERP). Compared with healthy controls, the depression group showed significantly prolonged MMN latency [Fz: (227.88 ± 31.08) ms vs. (208.70 ± 25.35) ms, P < 0.01; Cz: (223.73 ± 29.03) ms vs. (204.18 ± 22.43) ms, P < 0.01], and obviously reduced Fz amplitude [(2.42 ± 2.18) μV vs. (5.65 ± 5.59) μV, P = 0.03]. A significant positive correlation was observed between MMN latencies at Fz and Cz electrodes ( P < 0.01). Oxy-Hb in left frontopolar prefrontal channels (CH15/17) was significantly decreased in patient group ( P < 0.05). Our findings suggest that adolescents with depression exhibit hypofunction in the left prefrontal cortex and impaired automatic sensory processing. The combined application of fNIRS and ERP techniques may provide an objective basis for early clinical identification.
Humans
;
Spectroscopy, Near-Infrared/methods*
;
Adolescent
;
Prefrontal Cortex/physiopathology*
;
Evoked Potentials/physiology*
;
Depression/physiopathology*
;
Female
;
Male
;
Oxyhemoglobins
;
Electroencephalography
4.Xiangshao Granules Ameliorate Post-stroke Depression by Inhibiting Activation of Microglia and IDO1 Expression in Hippocampus and Prefrontal Cortex.
Cheng-Gang LI ; Lu-Shan XU ; Liang SUN ; Yu-Hao XU ; Xiang CAO ; Chen-Chen ZHAO ; Sheng-Nan XIA ; Qing-Xiu ZHANG ; Yun XU
Chinese journal of integrative medicine 2025;31(1):28-38
OBJECTIVE:
To investigate the therapeutic effect of Xiangshao Granules (XSG) on post-stroke depression (PSD) and explore the underlying mechanisms.
METHODS:
Forty-three C57BL/6J mice were divided into 3 groups: sham (n=15), PSD+vehicle (n=14), and PSD+XSG (n=14) groups according to a random number table. The PSD models were constructed using chronic unpredictable mild stress (CUMS) after middle cerebral artery occlusion (MCAO). The sham group only experienced the same surgical operation, but without MACO and CUMS stimulation. The XSG group received XSG (60 mg/kg per day) by gavage for 4 weeks. The mice in the sham and vehicle groups were given the same volume of 0.9% saline at the same time. The body weight and behavior tests including open field test, sucrose preference test, tail suspension test, and elevated plus-maze test, were used to validate the PSD mouse model. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining were used to evaluate the anti-inflammatory effects of XSG. The potential molecular mechanisms were explored and verified through network pharmacology analysis, Nissl staining, Western blot, ELISA, and RT-qPCR, respectively.
RESULTS:
The body weight and behavior tests showed that MCAO combined with CUMS successfully established the PSD models. XSG alleviated neuronal damage, reduced the expressions of pro-apoptotic proteins Caspase-3 and B-cell lymphoma-2 (BCL-2)-associated X (BAX), and increased the expression of anti-apoptotic protein BCL-2 in PSD mice (P<0.05 or P<0.01). XSG inhibited microglial activation and the expressions of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1 β, and IL-6 via the toll-like receptor 4/nuclear factor kappa-B signaling pathway in PSD mice (P<0.05 or P<0.01). Furthermore, XSG decreased the expression of indoleamine 2,3-dioxygenase1 (IDO1) and increased the concentration of 5-hydroxytryptamine in PSD mice (P<0.05 or P<0.01).
CONCLUSION
XSG could reverse the anxiety/depressionlike behaviors and reduce the neuronal injury in the hippocampus and prefrontal cortex of PSD mice, which may be a potential therapeutic agent for PSD.
Animals
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Depression/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Mice, Inbred C57BL
;
Prefrontal Cortex/pathology*
;
Microglia/metabolism*
;
Stroke/drug therapy*
;
Disease Models, Animal
;
Mice
;
Behavior, Animal/drug effects*
5.Synchronized neural rhythms in rat hippocampal CA1 region and orbitofrontal cortex are involved in learning and memory consolidation in spatial goal-directed tasks.
Lingwei TANG ; Jiasong LI ; Haibing XU
Journal of Southern Medical University 2025;45(3):479-487
OBJECTIVES:
To investigate the neural mechanisms of rhythmic activity in the hippocampal CA1 region and orbitofrontal cortex (OFC) during a spatial goal-directed task.
METHODS:
Four long-Evans rats were trained to perform a spatial goal-directed task in a land-based water maze (Cheese-board maze). The task was divided into 5 periods: Pre-test, Pre-sleep, Learning, Post-sleep, and Post-test. During the Learning phase, the task was split into two goal navigation and two reward acquisition processes with a total of 8 learning stages. Local field potentials (LFP) from the CA1 and the OFC were recorded, and power spectral density analysis was performed on Theta (6-12 Hz), Beta (15-30 Hz), Low gamma (30-60 Hz), and High gamma (60-90 Hz) bands. Coherence, phase-locking value (PLV), and phase-amplitude cross coupling (PAC) were used to assess the interactions between the CA1 and the OFC during learning and memory.
RESULTS:
During the task training, the rats showed consistent rhythms of OFC neural activity across the task states (P>0.05) while exhibiting significant changes in Beta and High gamma rhythms in the CA1 region (P<0.05). Coherence and PLV between the CA1 and the OFC were higher during goal navigation, especially in the stable learning phase (Stage 8 vs Stage 1, P<0.01). The rats showed stronger cross-frequency coupling between CA1-Theta and OFC-Low gamma in the Post-test phase than in the Pre-test phase (P<0.05).
CONCLUSIONS
Learning and memory consolidation in goal-directed tasks involve synchronized activity between the CA1 region and the OFC, and cross-frequency coupling plays a key role in maintaining short-term memory of reward locations in rats.
Animals
;
Rats
;
Rats, Long-Evans
;
CA1 Region, Hippocampal/physiology*
;
Memory Consolidation/physiology*
;
Prefrontal Cortex/physiology*
;
Maze Learning/physiology*
;
Goals
;
Male
;
Memory/physiology*
;
Learning/physiology*
6.Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition.
Jinzhao WEI ; Licong LI ; Jiayi ZHANG ; Erdong SHI ; Jianli YANG ; Xiuling LIU
Neuroscience Bulletin 2025;41(1):33-45
Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
Prefrontal Cortex/physiology*
;
Humans
;
Emotions/physiology*
;
Cognition/physiology*
;
Gyrus Cinguli/physiology*
;
Computer Simulation
;
Models, Neurological
;
Neural Pathways/physiology*
;
Nerve Net/physiology*
7.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
8.Alpha-synuclein Fibrils Inhibit Activation of the BDNF/ERK Signaling Loop in the mPFC to Induce Parkinson's Disease-like Alterations with Depression.
Zhuoran MA ; Yan XU ; Piaopiao LIAN ; Yi WU ; Ke LIU ; Zhaoyuan ZHANG ; Zhicheng TANG ; Xiaoman YANG ; Xuebing CAO
Neuroscience Bulletin 2025;41(6):951-969
Depression (Dep) is one of the most common concomitant symptoms of Parkinson's disease (PD), but there is a lack of detailed pathologic evidence for the occurrence of PD-Dep. Currently, the management of symptoms from both conditions using conventional pharmacological interventions remains a formidable task. In this study, we found impaired activation of extracellular signal-related kinase (ERK), reduced levels of transcription and translation, and decreased expression of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) of PD-Dep rats. We demonstrated that the abnormal phosphorylation of α-synuclein (pS129) induced tropomyosin-related kinase receptor type B (TrkB) retention at the neuronal cell membrane, leading to BDNF/TrkB signaling dysfunction. We chose SEW2871 as an ameliorator to upregulate ERK phosphorylation. The results showed that PD-Dep rats exhibited improvement in behavioral manifestations of PD and depression. In addition, a reduction in pS129 was accompanied by a restoration of the function of the BDNF/ERK signaling loop in the mPFC of PD-Dep rats.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
alpha-Synuclein/metabolism*
;
Male
;
Prefrontal Cortex/drug effects*
;
Rats, Sprague-Dawley
;
Depression/metabolism*
;
MAP Kinase Signaling System/drug effects*
;
Rats
;
Parkinson Disease/metabolism*
;
Receptor, trkB/metabolism*
;
Phosphorylation
;
Disease Models, Animal
;
Signal Transduction
9.The Role of Prefrontal and Posterior Parietal Cortex in Generating Multiple Step Saccades.
Wenbo MA ; Zhaohuan DING ; Leixiao FENG ; Xiaoli LI ; Mingsha ZHANG
Neuroscience Bulletin 2025;41(8):1418-1428
While multiple step saccades (MSS) are occasionally reported in the healthy population, they are more evident in patients with Parkinson's disease (PD). Therefore, MSS has been suggested as a biological marker for the diagnosis of PD. However, the lack of clarity on the neural mechanism underlying the generation of MSS largely impedes their application in the clinic. We have proposed recently that MSS are triggered by the discrepancy between desired and executed saccades. Accordingly, brain regions involved in saccadic planning and execution might play a role in the generation of MSS. To test this hypothesis, we explored the role of the prefrontal (PFC) and posterior parietal cortex (PPC) in generating MSS by conducting two experiments: electroencephalographic recording and single-pulse transcranial magnetic stimulation in the PFC or PPC of humans while participants were performing a gap saccade task. We found that the PFC and PPC are involved in the generation of MSS.
Humans
;
Parietal Lobe/physiology*
;
Saccades/physiology*
;
Prefrontal Cortex/physiology*
;
Male
;
Transcranial Magnetic Stimulation
;
Female
;
Electroencephalography
;
Adult
;
Young Adult
10.The Supplementary Motor Area as a Flexible Hub Mediating Behavioral and Neuroplastic Changes in Motor Sequence Learning: A TMS and TMS-EEG Study.
Jing CHEN ; Yanzi FAN ; Xize JIA ; Fengmei FAN ; Jinhui WANG ; Qihong ZOU ; Bing CHEN ; Xianwei CHE ; Yating LV
Neuroscience Bulletin 2025;41(5):837-852
Attempts have been made to modulate motor sequence learning (MSL) through repetitive transcranial magnetic stimulation, targeting different sites within the sensorimotor network. However, the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified. This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper (SMAp) in modulating MSL across different complexity levels and for both hands, as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation. Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL, which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions, particularly in interhemispheric connections. These findings may have important clinical implications, particularly for motor rehabilitation in populations such as post-stroke patients.
Humans
;
Transcranial Magnetic Stimulation
;
Motor Cortex/physiology*
;
Male
;
Electroencephalography
;
Neuronal Plasticity/physiology*
;
Female
;
Adult
;
Evoked Potentials, Motor/physiology*
;
Young Adult
;
Learning/physiology*

Result Analysis
Print
Save
E-mail