1.Preparation, optimization, and in vitro evaluation of Pediococcus acidilactici HRQ-1 microcapsules.
Ruiqin HAN ; Song XU ; Xinyuan WANG ; Jingjing WANG ; Xiaoxia ZHANG ; Liping DU ; Zhiyong HUANG
Chinese Journal of Biotechnology 2025;41(4):1415-1427
We have isolated an intestinal probiotic strain, Pediococcus acidilactici HRQ-1. To improve its gastrointestinal fluid tolerance, transportation and storage stability, and slow-release properties, we employed the extrusion method to prepare the microcapsules with P. acidilactici HRQ-1 as the core material and sodium alginate and chitosan as the wall material. The optimal conditions for preparing the microcapsules were determined by single factor and orthogonal tests, and the optimal ratio was determined by taking the embedding rate, survival rate, storage stability, gastrointestinal fluid tolerance, and release rate as the evaluation indexes. The results showed that under the optimal embedding conditions, the embedding rate reached (89.60±0.02)%. Under the optimal formula of freeze-drying protective agent, the freeze-drying survival rate reached (76.42±0.13)%, and the average size of the microcapsules produced was (1.16±0.03) mm. The continuous gastrointestinal fluid simulation experiments confirmed that the microcapsules ensured the viable bacterial count and can slowly release bacteria in the intestinal fluid. The curve of the viable bacterial count during storage at 4 ℃ and room temperature indicated that the prepared microcapsules achieved strains' live number protection. The formula and preparation process of P. acidilactici microcapsules may provide a technological reserve for the preparation of more live bacterial drugs in the future.
Pediococcus acidilactici/chemistry*
;
Probiotics/chemistry*
;
Capsules/chemistry*
;
Alginates/chemistry*
;
Chitosan/chemistry*
;
Drug Compounding/methods*
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
;
Freeze Drying
2.Effects of vacuum freeze-drying based on different lyoprotectants on the stability of foot-and-mouth disease virus-like particles.
Wei GUO ; Qianqian XIE ; Ruipeng LIU ; Hu DONG ; Yun ZHANG ; Xiaoqiang WANG ; Shiqi SUN ; Huichen GUO ; Zhidong TENG
Chinese Journal of Biotechnology 2025;41(7):2682-2693
Vaccination is a crucial strategy for the prevention and control of infectious diseases. Virus-like particles (VLPs), composed of structural proteins, have garnered significant attention as a novel type of vaccine due to their excellent safety and immunogenicity. However, similar to most vaccine antigens, VLPs exhibit insufficient thermal stability, which not only restricts the widespread application of vaccines but also increases the risk of vaccine inactivation. This study aims to enhance the stability and shelf life of VLPs derived from type A foot-and-mouth disease virus (FMDV) by employing vacuum freeze-drying technology. The optimal lyoprotectant formulation was determined through single-factor and combinatorial screening. Subsequently, the correlation between the immunogenicity of the freeze-dried vaccine and the content of FMDV VLPs was evaluated via a mouse model. The stability of FMDV VLPs before and after freeze-drying was further assessed by storing them at 4, 25, and 37 ℃ for varying time periods. Results indicated that the lyoprotectant formulation No.1, composed of 7.5% trehalose, 0.1% Tween 80, 50 mmol/L glycine, 1% sodium glutamate, and 3% polyvinylpyrrolidone (PVP), effectively preserved the content of FMDV VLPs during the vacuum freeze-drying process. The immunization trial in mice revealed that the levels of specific antibodies, immunoglobulin G1 (IgG1), interleukin-4 (IL-4), and neutralizing antibodies induced by freeze-dried FMDV VLPs were comparable to those induced by non-freeze-dried FMDV VLPs. The heat treatment results showed that the storage periods of freeze-dried FMDV VLPs at 4, 25, and 37 ℃ were significantly longer than those of non-freeze-dried FMDV VLPs. In conclusion, the selected lyoprotectant formulation effectively improved the stability of FMDV VLPs vaccines. This study provides valuable insights for enhancing the stability of novel subunit vaccines.
Freeze Drying/methods*
;
Animals
;
Foot-and-Mouth Disease Virus/immunology*
;
Mice
;
Vaccines, Virus-Like Particle/chemistry*
;
Foot-and-Mouth Disease/immunology*
;
Vacuum
;
Drug Stability
;
Mice, Inbred BALB C
;
Viral Vaccines/immunology*
3.Microencapsulated β-carotene preparation using different drying treatments.
Xiang-Yu LI ; Mian-Bin WU ; Min XIAO ; Shu-Huan LU ; Zhi-Ming WANG ; Jian-Ming YAO ; Li-Rong YANG
Journal of Zhejiang University. Science. B 2019;20(11):901-909
β-Carotene is one of the most abundant natural pigments in foods; however, usage of β-carotene is limited because of its instability. Microencapsulation techniques are usually applied to protect microencapsulated β-carotene from oxidization. In this study, β-carotene was microencapsulated using different drying processes: spray-drying, spray freeze-drying, coating, and spray granulation. The properties of morphology, particle size, water content, thermal characteristic, and chemical stability have been explored and compared. Scanning electron microscopy measurements showed that the coated powder had a dense surface surrounded by starch and suggested that the coating process gave a microencapsulated powder with the smallest bulk density and the best compressibility among the prepared powders. The chemical stabilities of microcapsules were evaluated during six months of storage at different temperatures. The coated powder had the highest mass fraction of β-carotene, which indicated that the coating process was superior to the three other drying processes.
Drug Compounding/methods*
;
Drug Stability
;
Freeze Drying
;
Microscopy, Electron, Scanning
;
Technology, Pharmaceutical
;
beta Carotene/chemistry*
4.Freeze drying process optimization of ginger juice-adjuvant for Chinese materia medica processing and stability of freeze-dried ginger juice powder.
Chun-Yu YANG ; Feng-Qian GUO ; Chen ZANG ; Hui CAO ; Bao-Xian ZHANG
China Journal of Chinese Materia Medica 2018;43(3):520-526
Ginger juice, a commonly used adjuvant for Chinese materia medica, is applied in processing of multiple Chinese herbal decoction pieces. Because of the raw materials and preparation process of ginger juice, it is difficult to be preserved for a long time, and the dosage of ginger juice in the processing can not be determined base on its content of main compositions. Ginger juice from different sources is hard to achieve consistent effect during the processing of traditional Chinese herbal decoction pieces. Based on the previous studies, the freeze drying of ginger juice under different shelf temperatures and vacuum degrees were studied, and the optimized freeze drying condition of ginger juice was determined. The content determination method for 6-gingerol, 8-gingerol, 10-gingerol and 6-shagaol in ginger juice and redissolved ginger juice was established. The content changes of 6-gingerol, 8-gingerol, 10-gingerol, 6-gingerol, 6-shagaol, volatile oil and total phenol were studied through the drying process and 30 days preservation period. The results showed that the freeze drying time of ginger juice was shortened after process optimization; the compositions basically remained unchanged after freeze drying, and there was no significant changes in the total phenol content and gingerol content, but the volatile oil content was significantly decreased(<0.05). Within 30 days, the contents of gingerol, total phenol, and volatile oil were on the decline as a whole. This study has preliminarily proved the feasibility of freeze-drying process of ginger juice as an adjuvant for Chinese medicine processing.
Adjuvants, Pharmaceutic
;
Chemistry, Pharmaceutical
;
methods
;
Drugs, Chinese Herbal
;
standards
;
Freeze Drying
;
Ginger
;
chemistry
;
Materia Medica
;
standards
5.Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS.
Meng-ya JIN ; Ling DONG ; Yuan-ming LUO ; Li YU ; Mei MO ; Cheng-bo HOU ; Zhi-yuan LI
Acta Pharmaceutica Sinica 2015;50(12):1637-1644
This study was designed to use iTRAQ technology coupled with 2D LC-MS/MS to study the comparative proteomics of different processing technology for pilose antler. 1015 proteins were identified with 2D LC combined with MOLDI TOF/TOF mass spectrometry. Comparative analysis with Protein Pilot (Version 4.5) revealed that 87 proteins were changed (P ≤ 0.05, the ratio of > 1.50 or < 0.60 as the threshold selection of difference proteins), of which 24 were up regulated and 33 were down regulated in the traditional frying process (TFP) compared with the fresh pilose antler (P ≤ 0.05). 7 significant different proteins (P ≤ 0.001), most of these significantly changed proteins were found to be involved in calcium ion binding and ATP binding associated with human healthy. Freeze drying with protective agent (FDP) (Trehalose) can improve the content of significantly different proteins (P ≤ 0.001) including Collagen alpha-1 (XII) chain (COL12A1) and Collagen alpha-1 (II) chain (COL2A1). The significant function involves in platelets activating, maintenance of spermatogonium, and disorder expression in tumor cells. The functional annotation by Hierarchical clustering and GO (gene ontology) showed that the main molecule functions of the proteins significantly changed in these processes were involved in binding (52.7%), catalytic (25.3%), structural molecule and transporter (6.6%).
Animals
;
Antlers
;
chemistry
;
Chromatography, Liquid
;
Collagen
;
chemistry
;
Down-Regulation
;
Freeze Drying
;
Gene Expression Regulation
;
Proteomics
;
Tandem Mass Spectrometry
;
Technology, Pharmaceutical
;
methods
;
Up-Regulation
6.Impact of drug molecules on HP-β-CD compound inclusion.
Dan-Dan TANG ; Na LI ; Li-Wen WANG ; Ji-Fen ZHANG ; Xiao-Yu XU
China Journal of Chinese Materia Medica 2014;39(15):2893-2899
To study the interaction of drugs of different properties, namely puerarin, borneol and catalpol in the process of in- clusion, in order to explore the inclusion regularity of multi-component and multi-property traditional Chinese medicine compound in- clusions. With HP-β-CD as the inclusion material, the freeze-drying method was used to prepare the inclusion. The inclusion between puerarin, borneol and catalpol was tested by measuring the inclusion concentration, DSC and X-ray diffraction. According to the find- ings, when insoluble drugs puerarin and borneol were included simultaneously, and puerarin was overdosed, puerarin included was almost equal to puerarin included, and borneol was not included. When puerarin was under-dosed, and HP-β-CD was overdosed, borne- ol was included, and the simultaneous inclusion was lower than the separate inclusion of borneol. When water-soluble drug catalpol was jointly included with puerarin or borneol, the simultaneous inclusion was almost the same with their separate inclusion, without charac- teristic peak of catalpol in DSC and X-ray diffraction patterns. There is a competition in the simultaneous inclusion between water-solu- ble drugs puerarin and borneol and a stronger competition in puerarin. The water-soluble drug catalpol could be included with HP-β-CD with no impact on the inclusion of puerarin or borneol.
2-Hydroxypropyl-beta-cyclodextrin
;
Bornanes
;
chemistry
;
therapeutic use
;
Brain Ischemia
;
drug therapy
;
Drug Compounding
;
methods
;
Freeze Drying
;
Iridoid Glucosides
;
chemistry
;
therapeutic use
;
Isoflavones
;
chemistry
;
therapeutic use
;
Solubility
;
beta-Cyclodextrins
;
chemistry
7.Effects of freeze-drying process on polymerized human placenta hemoglobin.
Lanzhen ZHAO ; Shen LI ; Fengjuan LI ; Jinfeng WANG ; Chengmin YANG
Journal of Biomedical Engineering 2013;30(5):1052-1057
The present study was aimed to investigate the influence of freeze-drying on the quality of polymerized human placenta hemoglobin (PolyPHb). The PolyPHb solution was freeze-drying under suitable conditions. Hemoglobin concentration, methemoglobin (MetHb) content, UV spectrum, Fe3 content, oxygen-carrying capacity, pH, the average molecular weight and its distribution, circular dichroism, oxygen equilibrium curve and other indicators were measured before and after freeze-drying. The appearance, residual water content, rehydration time of the lyophilized product were also evaluated. The results showed that there was no significant difference on all the indicators measured above, which indicated that freeze-drying process had no effect on the physical and chemical properties of PolyPHb, as well as on its biological activity. Therefore, the properties of PolyPHb were stable during this freeze-drying process and could be preserved after such freeze-drying process.
Blood Substitutes
;
Female
;
Freeze Drying
;
methods
;
Hemoglobins
;
chemistry
;
Humans
;
Methemoglobin
;
analysis
;
Placenta
;
chemistry
;
Polymerization
;
Pregnancy
8.Effects of different lyophilizing protectants on lyophilized trehalose-loading red blood cells.
Yan CHEN ; Zhi-Gang LU ; Hai BAI
Journal of Experimental Hematology 2013;21(3):775-779
This study was purposed to evaluate the effect of different lyophilizing protectants including human albumin, glucan, polyvinyl pyrrolidone and glycerine on lyophilized trehalose-loading red blood cells (RBC), then to screen the optimal lyophilizing protectant. The RBC were incubated in 800 mmol/L concentration of trehalose solution at 37°C for 7 hours, and washed 3 times with PBS solution to obtain the trehalose-loading RBC. The trehalose-loading RBC in control group were directly lyophilized without lyophilizing protectants, the trehalose-loading RBC in the experimental group were mixed with Lyophilizing protectants. The samples of 2 groups were kept at room temperature for 30 minutes, pre-frozen at -80°C for 24 hours, then lyophilized in freeze-dryer for 24 hours. Finally the samples were quickly rehydrated by 6% HES at 37°C. The recovery rate and hemolysis rate of hemoglobin were detected by using cyanohemoglobin detection kit. The water content of unhydrated samples were detected at the same time. The results showed that when the moisture content of sample was 3% - 5%, the recovery rate of hemoglobin in control group was 33.57 ± 2.89%, and that in experimental group was 51.15 ± 1.98%, there was statistically significant difference between the control and experimental group (P < 0.05). When the different concentration of dextran solution was chosen as protectants, the recovery rate of hemoglobin of lyophilized RBC was obviously lower. The higher concentration of dextran, the better the recovery rate. The recovery rate of hemoglobin was 22.15 ± 4.12% when the concentration of dextran was 36%, there were statistically significant difference between the two groups (P < 0.05). When the different concentration of polyvinyl pyrrolidone (PVP) solutions was chosen as protectants, especially the concentration below 40%, the recovery rate of hemoglobin of lyophilized RBC was significantly belower than the control group, there was statistically significant difference between the two groups (P < 0.05). When 10% glycerol was used as protectants, the recovery rate of hemoglobin was 3.93 ± 1.80%. There was also statistically significant difference between the two groups (P < 0.05). It is concluded that human serum albumin shows an important protective effect on the lyophilization of the trehalose-loading red blood cells. The dextran and PVP at the concentration lower than 40% can decrease the protective effect of trehalose in cells. Glycerol can not be chosen as protectant for lyophilized trehalose-loading red blood cells.
Blood Preservation
;
methods
;
Cryoprotective Agents
;
pharmacology
;
Erythrocytes
;
drug effects
;
Freeze Drying
;
methods
;
Humans
;
Trehalose
;
pharmacology
9.Study of process optimization on freeze drying of human amniotic membrane.
Jian GAO ; Lingling LIU ; Wen LIU ; Jing SONG ; Kun LI ; Yunjia HONG ; Leshui LU ; Hu LU
Journal of Biomedical Engineering 2012;29(4):705-709
The study was aimed to investigate the optimum conditions of freeze drying preservation of amniotic membrane (AM). The AM from the health puerperal woman was preserved by freeze drying at optimized way. The key factors of freeze drying process, including abstersion aqua, conservation liquor, the curve of freezing temperature, and the ingredient of protective agent, were optimized. All their morphologic structure was observed by light microscope and scanning electron microscope. The degradation rates by collagenase IV and the characterization of biomechanics were analyzed. The radio-immunologic method was used to investigate the cytokines quantity. All properties of freeze dried AM were compared with those of fresh AM. Light micrographs showed that the five structure-layers exist both in the fresh AM and in those preserved by freeze drying, while the fibro-material was tight-structured in the fresh AM, but loose slightly; the thickness of fibro-material was larger slightly in freeze dried AM. Scanning electron micrographs show that the micro-hairs of epithelial cells in fresh AM were decreased slightly in optimized drying AM, the collagen fibre of fresh AM and of optimized drying AM were well in morphological structures and arranged tightly. The degradation rate by collagenase IV was faster in optimized drying AM,compared with that of the fresh AM. There were insignificant diversity in biomechanical characters (tensile strength, elongation at break and elastic modulus) of the optimized drying AM compared with fresh AM. The cytokines quantity in optimized drying AM decreased significantly compared with fresh AM. The improved freeze drying process has better advantage in keeping the morphological structure, preferable biomechanics and biological vitality of AM, compared with the early research.
Amnion
;
metabolism
;
ultrastructure
;
Biomechanical Phenomena
;
Collagenases
;
metabolism
;
Cytokines
;
metabolism
;
Female
;
Freeze Drying
;
methods
;
Humans
10.Freeze grinding combined ultrasonic technique for the treatment of nail test material.
Hang CHEN ; Ping XIANG ; Qi-ran SUN ; Min SHEN
Journal of Forensic Medicine 2012;28(5):342-346
OBJECTIVE:
To investigate the feasibility of the new method of combining freeze grinding with ultrasonic technique for the pretreatment of the nail for toxicological and pharmaceutical analysis and to compare the advantages and disadvantages of this method with other traditional methods.
METHODS:
Five pretreatment methods were examined. Scanning electron microscope (SEM) was used to observe the microstructural changes of the nail.
RESULTS:
The microscopic structure of nail totally destroyed after alkali treatment. The hierarchy mode of the internal structure became obvious and tight after acid hydrolysis, which became indistinct after methanol infiltration. The structure of nail broke to pieces after ultrasonic technique. After freeze grinding combined ultrasonic technique, the particle structure kept original shape, and its size was one hundred times smaller than which after manual way.
CONCLUSION
The freeze grinding combined ultrasonic technique can improve the release efficiency, and ensure the stability of the toxicant or drug during the pretreatment process. It is appropriate for toxicological and pharmaceutical analysis in the nail.
Forensic Pathology
;
Freeze Drying/methods*
;
Humans
;
Microscopy, Electron, Scanning
;
Nails/chemistry*
;
Particle Size
;
Ultrasonics

Result Analysis
Print
Save
E-mail