1.Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin.
Tao WANG ; Donald MILLER ; Frank BURCZYNSKI ; Xiaochen GU
Acta Pharmaceutica Sinica B 2014;4(1):43-51
Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%-338% than that through LDPE.
2.Prospect of bone morphogenetic protein 13 in liver diseases.
Yining LI ; Hong SHEN ; Frank J BURCZYNSKI ; Yuewen GONG
Journal of Central South University(Medical Sciences) 2012;37(1):1-5
Bone morphogenetic proteins (BMPs) belong to TGF-β superfamily and are a group of important cytokines involved in cell differentiation, proliferation and embryonic development. Multiple BMPs play important roles in several functions of vertebrates. Signaling pathway of BMPs is known to be mediated by Smad proteins, which include 8 members while Smad1, Smad5 and Smad8 are involved in BMPs signal transduction while Smad2 and Smad3 are mediated TGF-β signal transduction. Although several BMPs such as BMP4 and BMP9 have been documented in the liver, BMP13 has not been examined in the liver. BMP13 also known as growth differentiation factor (GDF)-6 or cartilage-derived morphogenetic protein (CDMP)-2 is one of the BMPs family members. Function of BMP13 has been investigated in bone and tendon repair. It can stimulate tendon-like cell proliferation. However, our recent findings revealed that there was expression of BMP13 in the liver and its expression was modulated during metabolic disorders. The current article is to understand biological function of BMP13 especially in the liver.
Bone Morphogenetic Proteins
;
metabolism
;
physiology
;
Growth Differentiation Factor 6
;
metabolism
;
physiology
;
Humans
;
Liver
;
metabolism
;
Liver Diseases
;
metabolism
;
Smad Proteins
;
metabolism
3.Silymarin and hepatoprotection.
Frank J BURCZYNSKI ; Guqi WANG ; David NGUYEN ; Yufei CHEN ; Howard J SMITH ; Yuewen GONG
Journal of Central South University(Medical Sciences) 2012;37(1):6-10
OBJECTIVE:
To determine the hepatoprotective effect of silymarin with Chang cell cultures. Specifically, to investigate the antioxidant properties of silymarin and its protective function in reducing pro-apoptotic markers.
METHODS:
Intracellular free radical levels were assessed with dichlorofluorescein (DCF) fluorescence after exposing cells to an oxidative stress of 400 μmol/L H2O2 for 20 min. Levels of cellular ATP and bax expression were examined to evaluate the protective effects of silymarin.
RESULTS:
Silymarin significantly reduced the DCF fluorescence signal. Cell viability, assessed by the MTT assay, showed that silymarin enhanced the cell growth. Drug treatment was also associated with enhanced ATP levels, and reduced Bax and protein mRNA levels.
CONCLUSION
Silymarin can function as a hepatoprotectant against free radical damage due to oxidative stress. The protective nature extends to reducing levels of pro-apoptotic Bax protein. Silymarin may be a useful adjuvant for the treatment of specific liver diseases.
Adenosine Triphosphate
;
metabolism
;
Antioxidants
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line
;
Fluoresceins
;
Free Radicals
;
metabolism
;
Hepatocytes
;
cytology
;
metabolism
;
Humans
;
Hydrogen Peroxide
;
Protective Agents
;
pharmacology
;
RNA, Messenger
;
genetics
;
metabolism
;
Silymarin
;
pharmacology
;
bcl-2-Associated X Protein
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail