1.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
3.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
4.Effect of interleukin-17 gene polymorphism on susceptibility to cow's milk protein allergy in infants and its association with gut microbiota.
Wen-Ying HAO ; Chun ZHU ; Song LU ; Hong WANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):696-701
OBJECTIVES:
To investigate the effect of interleukin-17 (IL-17) gene polymorphism on the susceptibility to cow's milk protein allergy (CMPA) in infants and its association with gut microbiota.
METHODS:
A prospective study was conducted involving 100 infants diagnosed with CMPA at the Women and Children's Hospital of Ningbo University from January 2022 to October 2024. A total of 100 healthy infants undergoing routine check-ups at the same hospital during the same period was enrolled as the control group. Medical information was obtained through the electronic medical record system. IL-17A (rs2275913) and IL-17F (rs1889570) polymorphisms were detected using polymerase chain reaction-restriction fragment length polymorphism method. Serum IL-17 levels were measured using enzyme-linked immunosorbent assay, and high-throughput sequencing was employed to analyze the relative abundance of Lactobacillus and Bifidobacterium. Multivariate logistic regression analysis was used to explore the influencing factors of CMPA occurrence in infants.
RESULTS:
The proportions of infants with a family history of allergy and those with vitamin D deficiency or insufficiency were significantly higher in the CMPA group compared to those in the control group (P<0.05). The distribution of IL-17F (rs1889570) genotypes showed significant differences between the CMPA and control groups (P<0.05), with the frequency of the A allele being significantly higher in the CMPA group (P<0.05). Multivariate logistic regression analysis revealed that a family history of allergy, vitamin D deficiency or insufficiency, and carrying the IL-17F (rs1889570) AA genotype were independent influencing factors for CMPA in infants (P<0.05). Infants in the CMPA group with the IL-17F (rs1889570) AA genotype had significantly higher serum IL-17 levels compared to those with AG/GG genotypes (P<0.05), while the relative abundance of Lactobacillus and Bifidobacterium was significantly lower (P<0.05).
CONCLUSIONS
IL-17F (rs1889570) gene polymorphism influences susceptibility to CMPA in infants, potentially through mechanisms involving IL-17 expression and the relative abundance of gut probiotics.
Humans
;
Interleukin-17/genetics*
;
Milk Hypersensitivity/microbiology*
;
Female
;
Infant
;
Male
;
Prospective Studies
;
Genetic Predisposition to Disease
;
Gastrointestinal Microbiome
;
Polymorphism, Genetic
;
Milk Proteins/immunology*
5.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
6.Antagonistic effect of Lactobacillus reuteri on testicular reproductive toxicity of neonicotinoid insecticides in mice.
Zhen-Han XU ; Pei-Gen CHEN ; Jin-Tao GUO ; Lin-Yan LÜ ; Hai-Cheng CHEN ; Gui-Hua LIU
National Journal of Andrology 2025;31(2):131-137
OBJECTIVE:
To explore the effect of Lactobacillus reuteri on testicular injury in mice exposed to neonicotinoid insecticides (NNI).
METHODS:
Fifteen C57BL/6 male mice were randomly divided into control group (CTRL group), exposure group (NNI group) and Lactobacillus intervention group (NNI-L group). The mice in CTRL group were given 0.02ml/g of 0.5% carboxymethyl cellulose sodium solution by gavage for 14 days. The mice in NNI group were given 0.02 ml/g of NNI mixture by gavage for 14 days. The mice in NNI-L group were given 0.02 ml/g of NNI mixture by gavage and 5×108cfu/ml of Lactobacillus reuteri powder solution for 14 days. Then, the histomorphology and function of testicle were evaluated by hematoxylin-eosin staining, immunofluorescence staining and RNA sequencing.
RESULTS:
Compared with CTRL group, the thickness of testicular seminiferous epithelium in the NNI group was significantly thinner. And the decline in the number of spermatogenic cells and sperm was observed. And the expression of spermatogonial stem cell marker UCHL1 was down-regulated which was significantly improved in NNI-L group compared with the NNI group. The abnormal expressions of hormone and sperm methylation related genes in testis of NNI group were detected by RNA sequencing, with significant down-regulation being found in NPFF and IGF2. While the expression of HSD3B8 was significantly up-regulated. The abnormal expression of these genes could be significantly improved after oral administration of Lactobacillus reuteri.
CONCLUSION
Testicular spermatogenesis and endocrine function can be damaged by NNI exposure. And oral administration of Lactobacillus reuteri protects testis from the adverse effects of NNI toxicity.
Animals
;
Male
;
Limosilactobacillus reuteri
;
Testis/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Insecticides/toxicity*
;
Neonicotinoids/toxicity*
;
Probiotics
;
Spermatogenesis/drug effects*
7.Comparison of energy and nutrient intakes between weekdays and weekends in Japanese preschool children based on meal categories.
Atsuki SAKAI ; Katsushi YOSHITA ; Takako TAKAHASHI ; Tetsuko OKABE ; Ruriko SASAKI ; Hiromi ISHIDA ; Hiromitsu OGATA ; Mitsuhiko HARA ; Yukiko YOSHIOKA ; Miho NOZUE ; Tatsuaki SAKAMOTO ; Sanae ITO ; Nobuko MURAYAMA
Environmental Health and Preventive Medicine 2025;30():71-71
BACKGROUND:
Meals are provided at nursery schools for Japanese preschool children, and this may result in different energy and nutrient intakes on weekdays and weekends. The purpose of this study was to obtain basic information for public nutrition policies in early childhood by examining differences in energy and nutrient intakes of preschool children between weekdays and weekends using meal categories such as breakfast, lunch, dinner, and snacks.
METHODS:
Energy and nutrient intakes were examined in 761 Japanese preschool children (423 boys, 338 girls) aged 3-6 years attending childcare facilities in seven regions in Japan. Data collection was based on non-consecutive four-day dietary records (two weekdays, two weekend days) in 2019 or 2020. Energy and nutrient intake by meal category were compared using a generalized linear mixed model adjusted for demographic factors.
RESULTS:
Total energy intake was significantly higher on weekdays for boys (1,478 vs. 1,415 kcal) and girls (1,349 vs. 1,296 kcal) (both P < 0.001). Weekday lunches had higher protein content and essential micronutrients such as potassium, iron, vitamins, and lower fat, saturated fatty acids, and salt, compared to weekend lunches. Similarly, weekday snacks also had significantly higher nutritional consumption for most nutrients compared to weekend equivalents.
CONCLUSION
These findings suggest that meals at nursery schools, particularly lunch and snacks, result in more desirable nutrient intake in preschool children. On weekdays, children consume meals with higher nutrient density, possibly due to the role of dietitians in menu planning. However, some children still fail to meet the Dietary Reference Intakes for Japanese, indicating a need for improvements in nursery school and home meals. More communication is needed between nursery schools and families, including sharing menus and recipes is essential. The results of this study are of value for development of public health nutrition strategies targeting early childhood.
Humans
;
Child, Preschool
;
Male
;
Japan
;
Female
;
Energy Intake
;
Meals
;
Child
;
Nutrients/analysis*
;
Diet/statistics & numerical data*
;
East Asian People
8.Identification of meal patterns based on energy intake distribution across the day and their associations with diet quality and body mass index.
Minami SUGIMOTO ; Keiko ASAKURA ; Sachie MORI ; Nana SHINOZAKI ; Kentaro MURAKAMI ; Haruhiko IMAMURA ; Yuji NISHIWAKI
Environmental Health and Preventive Medicine 2025;30():78-78
BACKGROUND:
This cross-sectional study examined meal patterns based on daily energy intake distribution and their associations with nutrient and food intake, diet quality, and body mass index (BMI).
METHODS:
Body height, weight, habitual dietary intake and the Healthy Eating Index (HEI)-2020 score by eating occasion were assessed using the validated Meal-based Diet History Questionnaire among employees (465 males and 193 females aged 20-75 years) in the Tokyo Metropolitan Area. Meal patterns were extracted based on % energy intake from breakfast, lunch, dinner, and snacks using K-means clustering by sex. Dietary intake, HEI-2020 score, and BMI were then compared between sex-specific meal patterns.
RESULTS:
The identified patterns were "large lunch and dinner" (n = 299), "three meals-balanced" (n = 97), and "large dinner" (n = 69) patterns in males and "large dinner" (n = 79); "large afternoon snack" (n = 54) and "large lunch" (n = 60) patterns in females. The HEI-2020 scores were the highest for dinner, followed by breakfast, lunch, and snacks in any meal pattern. Males with the "large dinner" pattern had lower intakes of rice, bread, carbohydrates, dietary fibre, and thiamine; higher intake of alcoholic beverages; and higher HEI-2020 scores than those with other patterns. Females with a "large dinner" pattern had a lower intake of bread, confectionery, total and saturated fats, and carbohydrates; higher intake of fish, meat, and alcoholic beverages; higher HEI-2020 scores; and lower BMI. Thus, a meal pattern with higher energy intake distribution at dinner was associated with higher diet quality among males and females and lower BMI among females in Japanese workers.
CONCLUSIONS
These findings suggest that improving the quality of the meal with the highest energy contribution could help enhance overall dietary quality and metabolism.
Humans
;
Female
;
Male
;
Middle Aged
;
Adult
;
Energy Intake
;
Body Mass Index
;
Cross-Sectional Studies
;
Aged
;
Meals
;
Young Adult
;
Tokyo
;
Feeding Behavior
;
Diet/statistics & numerical data*
9.Mechanisms by which the gut microbiota regulates depressive disorder via the tryptophan metabolic pathway.
Jing DU ; Jiao LI ; Pule LIU ; Yan ZHANG ; Qiangli DONG ; Ning YANG ; Xinru LIU
Journal of Central South University(Medical Sciences) 2025;50(7):1263-1270
The relationship between gut microbiota and depressive disorder has become a research focus in recent years. Within the microbiota-gut-brain axis, the gut microbiota influences the onset and progression of depressive disorder primarily through the tryptophan metabolic pathway. Tryptophan, an essential amino acid in humans, is subject to dual regulation by intestinal microorganisms, which modulate its metabolic balance via inflammatory stimulation and microbial metabolite production. In depression, excessive activation of the kynurenine branch of tryptophan metabolism leads to the accumulation of proinflammatory and neurotoxic metabolites, thereby exacerbating neuroinflammation in the brain. Intervention studies indicate that the antidepressant-like effects of probiotics and traditional Chinese medicine are associated with remodeling of the gut microbiota, restoration of tryptophan metabolic balance, and alleviation of neuroinflammation. Furthermore, targeted inhibition of kynurenine 3-monooxygenase can mitigate neuroinflammation by regulating microglial activity, thus improving depressive-like behaviors. In summary, the metabolite-inflammation axis represents a central node in the interaction regulation between tryptophan metabolism and the microbiota-gut-brain axis. This provides a theoretical foundation for developing novel therapeutic strategies targeting depression through modulation of gut microbiota-mediated tryptophan metabolism.
Tryptophan/metabolism*
;
Gastrointestinal Microbiome/physiology*
;
Humans
;
Depressive Disorder/microbiology*
;
Probiotics/therapeutic use*
;
Brain/metabolism*
;
Kynurenine/metabolism*
;
Metabolic Networks and Pathways
;
Animals
;
Medicine, Chinese Traditional
10.Dynamic changes in physiochemical, structural, and flavor characteristics of ginger-juice milk curd.
Haifeng PAN ; Wenna BAO ; Yi CHEN ; Hongxiu LIAO
Journal of Zhejiang University. Science. B 2025;26(4):393-404
Dynamic changes in the physiochemical, structural, and flavor characteristics of ginger-juice milk curd were explored by texture analysis, scanning electron microscopy, rheometry, electronic tongue, and gas chromatography-mass spectrometry (GC-MS). Protein electrophoresis showed that ginger juice could hydrolyze αs-, β-, and κ-casein. Curd formation was initiated at 90 s, marked by significant changes in intensity detected via intrinsic fluorescence. The contents of soluble protein and calcium decreased rapidly during coagulation, while the caseinolytic activity, storage moduli, loss moduli, hardness, adhesiveness, and water-holding capacity increased, resulting in a denser gel structure with smaller pores and fewer cavitations as observed by scanning electron microscopy. Electronic tongue analysis indicated that milk could neutralize the astringency and saltiness of ginger juice, rendering the taste of ginger-juice milk curd more akin to that of milk. Approximately 70 volatile components were detected in ginger-juice milk curd. α-Zingiberene, α-curcumene, β-sesquiphellandrene, and β-bisabolene were the predominant volatile flavor compounds, exhibiting an initial decrease in content followed by stability after 90 s. Decanoic acid, γ-elemene, and caryophyllene were identified as unique volatile compounds after mixing of milk and ginger juice. Understanding the dynamic changes in these characteristics during coagulation holds significant importance for the production of ginger-juice milk curd.
Zingiber officinale/chemistry*
;
Milk/chemistry*
;
Animals
;
Taste
;
Gas Chromatography-Mass Spectrometry
;
Caseins/chemistry*
;
Microscopy, Electron, Scanning
;
Rheology
;
Flavoring Agents

Result Analysis
Print
Save
E-mail