1.Local abaloparatide administration promotes in situ alveolar bone augmentation via FAK-mediated periosteal osteogenesis.
Ruyi WANG ; Yuan LI ; Bowen TAN ; Shijia LI ; Yanting WU ; Yao CHEN ; Yuran QIAN ; Haochen WANG ; Bo LI ; Zhihe ZHAO ; Quan YUAN ; Yu LI
International Journal of Oral Science 2025;17(1):63-63
Insufficient alveolar bone thickness increases the risk of periodontal dehiscence and fenestration, especially in orthodontic tooth movement. Abaloparatide (ABL), a synthetic analog of human PTHrP (1-34) and a clinical medication for treating osteoporosis, has recently demonstrated its potential in enhancing craniofacial bone formation. Herein, we show that intraoral submucosal injection of ABL, when combined with mechanical force, promotes in situ alveolar bone thickening. The newly formed bone is primarily located outside the original compact bone, implying its origin from the periosteum. RNA sequencing of the alveolar bone tissue revealed that the focal adhesion (FA) pathway potentially mediates this bioprocess. Local injection of ABL alone enhances cell proliferation, collagen synthesis, and phosphorylation of focal adhesion kinase (FAK) in the alveolar periosteum; when ABL is combined with mechanical force, the FAK expression is upregulated, in line with the accomplishment of the ossification. In vitro, ABL enhances proliferation, migration, and FAK phosphorylation in periosteal stem cells. Furthermore, the pro-osteogenic effects of ABL on alveolar bone are entirely blocked when FAK activity is inhibited by a specific inhibitor. In summary, abaloparatide combined with mechanical force promotes alveolar bone formation via FAK-mediated periosteal osteogenesis. Thus, we have introduced a promising therapeutic approach for drug-induced in situ alveolar bone augmentation, which may prevent or repair the detrimental periodontal dehiscence, holding significant potential in dentistry.
Osteogenesis/drug effects*
;
Periosteum/cytology*
;
Parathyroid Hormone-Related Protein/administration & dosage*
;
Animals
;
Focal Adhesion Protein-Tyrosine Kinases/metabolism*
;
Alveolar Process/drug effects*
;
Cell Proliferation/drug effects*
;
Phosphorylation
;
Rats
;
Male
;
Humans
;
Focal Adhesion Kinase 1/metabolism*
;
Cell Movement/drug effects*
2.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis
3.High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast.
Dawei XIE ; Zheng WANG ; Beibei SUN ; Liwei QU ; Musheng ZENG ; Lin FENG ; Mingzhou GUO ; Guizhen WANG ; Jihui HAO ; Guangbiao ZHOU
Frontiers of Medicine 2023;17(5):907-923
The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.
Female
;
Humans
;
Alternative Splicing
;
Breast Neoplasms/metabolism*
;
Carcinoma, Pancreatic Ductal/pathology*
;
Focal Adhesion Protein-Tyrosine Kinases/therapeutic use*
;
Nerve Tissue Proteins/genetics*
;
Neuroendocrine Tumors/genetics*
;
Oncogenes
;
Pancreatic Neoplasms/metabolism*
4.Neutrophil extracellular traps activates focal adhesion kinase by upregulating MMP9 expression to promote proliferation and migration of mouse colorectal cancer cells.
Yi HE ; Songlin HOU ; Changyuan MEMG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):416-422
Objective To investigate how the neutrophil extracellular traps (NETs) affect the proliferation and migration of mouse MC38 colorectal cancer cells and its mechanism. Methods Spleen neutrophils were extracted in mouse, followed by collection of NETs after ionomycin stimulation in vitro. The proliferation of MC38 cell was detected by CCK-8 assay, and migration ability were detected by TranswellTM and cell scratch assay, after co-incubation with MC38 cells. The mRNA expression of cellular matrix metalloproteinase 2 (MMP2) and MMP9 were detected by real-time fluorescence quantitative PCR, and the expression of MMP2, MMP9 and focal adhesion kinase (FAK), phosphorylated FAK protein were detected by Western blot. After silencing MMP9 using small interfering RNA (siRNA), the effect of NETs on the proliferation and migration ability of MC38 cells and the altered expression of related molecules were examined by previous approach. Results NETs promoted the proliferation and migration of MC38 cells and up-regulated the MMP9 expression and FAK phosphorylation. Silencing MMP9 inhibited the promotion of MC38 proliferation and migration by NETs and suppressed FAK phosphorylation. Conclusion NETs up-regulates MMP9 expression in MC38 cells, activates FAK signaling pathway and promotes tumor cell proliferation and migration.
Animals
;
Mice
;
Focal Adhesion Protein-Tyrosine Kinases/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Extracellular Traps/metabolism*
;
Cell Movement
;
Cell Proliferation
;
RNA, Small Interfering/genetics*
;
Colorectal Neoplasms/genetics*
;
Cell Line, Tumor
5.Micropillar-arrayed surfaces promote transforming growth factor beta 1 induced epithelial to mesenchymal transition by focal adhesion kinase-related signaling in A549 cells.
Lun-Kun MA ; Xing WANG ; Xiao-Li XU ; Jin ZHOU ; Yi LIAO ; Jian-Guo FENG ; Li-Ling TANG
Chinese Medical Journal 2020;134(6):754-756
6.Effect of the focal adhesion kinase inhibitor TAE226 on the epithelial-mesenchymal transition in human oral squamous cell carcinoma cell line.
Xiang-Yu ZOU ; Qin ZENG ; Ping LIU ; Min-Hai NIE
West China Journal of Stomatology 2020;38(1):17-22
OBJECTIVE:
To study the effect of the focal adhesion kinase inhibitor TAE226 on epithelial-mesenchymal transition (EMT) in human oral squamous cell carcinoma (OSCC) cell line.
METHODS:
HSC-3 and HSC-4 cells were cultured with TAE226 under different concentrations (0, 1, 5, and 10 μmol·L⁻¹) for 24, 48, and 72 h. Real-time quantitative polymerase chain reaction was performed to detect the mRNA expressions of E-cadherin and Vimentin. The protein expressions of E-cadherin and Vimentin were determined by Western blot assay after 48 h of TAE226 treatment.
RESULTS:
Real-time quantitative polymerase chain reaction showed that increasing the TAE226 dose and reaction time resulted in increased and decreased E-cadherin and Vimentin mRNA expressions, respectively (P<0.05). Western blot assays showed that increasing the TAE226 dose resulted in increased and decreased E-cadherin and Vimentin protein expressions, respectively (P<0.05).
CONCLUSIONS
TAE226, which is expected to be an effective drug for OSCC treatment, can effectively inhibit the EMT of the OSCC cell line.
Cadherins
;
Carcinoma, Squamous Cell
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Focal Adhesion Protein-Tyrosine Kinases
;
Humans
;
Morpholines
;
Mouth Neoplasms
;
Vimentin
7.Silencing MR-1 attenuates atherosclerosis in ApoE(−/−) mice induced by angiotensin II through FAK-Akt–mTOR-NF-kappaB signaling pathway.
Yixi CHEN ; Jianping CAO ; Qihui ZHAO ; Haiyong LUO ; Yiguang WANG ; Wenjian DAI
The Korean Journal of Physiology and Pharmacology 2018;22(2):127-134
Myofibrillogenesis regulator-1 (MR-1) is a novel protein involved in cellular proliferation, migration, inflammatory reaction and signal transduction. However, little information is available on the relationship between MR-1 expression and the progression of atherosclerosis. Here we report atheroprotective effects of silencing MR-1 in a model of Ang II-accelerated atherosclerosis, characterized by suppression focal adhesion kinase (FAK) and nuclear factor kappaB (NF-κB) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the siRNA-MR-1 substantially attenuated Ang II-accelerated atherosclerosis with stabilization of atherosclerotic plaques and inhibited FAK, Akt, mammalian target of rapamycin (mTOR) and NF-kB activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in Ang II-treated vascular smooth muscle cells (VSMCs) and macrophages: siRNA-MR-1 inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of Ang II and highlight actions of silencing MR-1 to inhibit Ang II signaling, which is atheroprotective.
Angiotensin II*
;
Angiotensins*
;
Animals
;
Arteries
;
Atherosclerosis*
;
Cell Proliferation
;
Focal Adhesion Protein-Tyrosine Kinases
;
Gene Expression
;
In Vitro Techniques
;
Macrophages
;
Mice*
;
Muscle Development
;
Muscle, Smooth, Vascular
;
NF-kappa B
;
Plaque, Atherosclerotic
;
RNA, Small Interfering
;
Signal Transduction
;
Sirolimus
8.Comparative Effects of Non-Thermal Atmospheric Pressure Plasma on Migration and Invasion in Oral Squamous Cell Cancer, by Gas Type.
Sung Un KANG ; Seong Jin SEO ; Yeon Soo KIM ; Yoo Seob SHIN ; Yoon Woo KOH ; Chang Min LEE ; Sang Sik YANG ; Jong Soo LEE ; Eunpyo MOON ; Hami KANG ; Jeong Beom RYEO ; Yuijina LEE ; Chul Ho KIM
Yonsei Medical Journal 2017;58(2):272-281
PURPOSE: The fourth state of matter, plasma is known as an ionized gas with electrons, radicals and ions. The use of non-thermal plasma (NTP) in cancer research became possible because of the progresses in plasma medicine. Previous studies on the potential NTP-mediated cancer therapy have mainly concentrated on cancer cell apoptosis. In the present study, we compared the inhibitory effect of NTP on cell migration and invasion in the oral squamous cancer cell lines. MATERIALS AND METHODS: We used oral squamous cancer cell lines (SCC1483, MSKQLL1) and different gases (N₂, He, and Ar). To investigate the mechanism of plasma treatment, using different gases (N₂, He, and Ar) which induces anti-migration and anti-invasion properties, we performed wound healing assay, invasion assay and gelatin zymography. RESULTS: The results showed that NTP inhibits cancer cell migration and invasion of oral squamous cancer cell. In addition, focal adhesion kinase expression and matrix metalloproteinase-2/9 activity were also inhibited. CONCLUSION: The suppression of cancer cell invasion by NTP varied depending on the type of gas. Comparison of the three gases revealed that N₂ NTP inhibited cell migration and invasion most potently via decreased expression of focal adhesion kinase and matrix metalloproteinase activity.
Apoptosis
;
Cell Line
;
Cell Movement
;
Epithelial Cells*
;
Focal Adhesion Protein-Tyrosine Kinases
;
Gases
;
Gelatin
;
Ions
;
Neoplasms, Squamous Cell*
;
Paxillin
;
Plasma
;
Plasma Gases*
;
Wound Healing
9.Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells.
Dong Jin YE ; Yeo Jung KWON ; Sangyun SHIN ; Hyoung Seok BAEK ; Dong Won SHIN ; Young Jin CHUN
Biomolecules & Therapeutics 2017;25(3):321-328
Steroid sulfatase (STS) is an enzyme responsible for the hydrolysis of aryl and alkyl sulfates. STS plays a pivotal role in the regulation of estrogens and androgens that promote the growth of hormone-dependent tumors, such as those of breast or prostate cancer. However, the molecular function of STS in tumor growth is still not clear. To elucidate the role of STS in cancer cell proliferation, we investigated whether STS is able to regulate the integrin signaling pathway. We found that overexpression of STS in HeLa cells increases the protein and mRNA levels of integrin β1 and fibronectin, a ligand of integrin α5β1. Dehydroepiandrosterone (DHEA), one of the main metabolites of STS, also increases mRNA and protein expression of integrin β1 and fibronectin. Further, STS expression and DHEA treatment enhanced phosphorylation of focal adhesion kinase (FAK) at the Tyr 925 residue. Moreover, increased phosphorylation of ERK at Thr 202 and Tyr 204 residues by STS indicates that STS activates the MAPK/ERK pathway. In conclusion, these results suggest that STS expression and DHEA treatment may enhance MAPK/ERK signaling through up-regulation of integrin β1 and activation of FAK.
Androgens
;
Breast
;
Cell Proliferation
;
Dehydroepiandrosterone
;
Estrogens
;
Fibronectins
;
Focal Adhesion Protein-Tyrosine Kinases
;
HeLa Cells
;
Humans*
;
Hydrolysis
;
Phosphorylation
;
Prostatic Neoplasms
;
RNA, Messenger
;
Steryl-Sulfatase*
;
Sulfates
;
Up-Regulation
;
Uterine Cervical Neoplasms*
10.Inhibition on Apoptosis Induced by Elevated Hydrostatic Pressure in Retinal Ganglion Cell-5 via Laminin Upregulating β1-integrin/Focal Adhesion Kinase/Protein Kinase B Signaling Pathway.
Yi LI ; Yan-Ming CHEN ; Ming-Ming SUN ; Xiao-Dan GUO ; Ya-Chen WANG ; Zhong-Zhi ZHANG
Chinese Medical Journal 2016;129(8):976-983
BACKGROUNDGlaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival.
METHODSRGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis.
RESULTSElevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group.
CONCLUSIONSThe data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK/AKT pathway might be potential treatments to prevent RGC loss in glaucomatous optic neuropathy.
Apoptosis ; Cells, Cultured ; Focal Adhesion Protein-Tyrosine Kinases ; physiology ; Humans ; Hydrostatic Pressure ; Integrin beta1 ; physiology ; Intraocular Pressure ; Laminin ; physiology ; Proto-Oncogene Proteins c-akt ; physiology ; Retinal Ganglion Cells ; physiology ; Up-Regulation

Result Analysis
Print
Save
E-mail