1.Associations between per- and polyfluoroalkyl substance exposure and the prevalence of myopia in adolescents: the mediating role of serum albumin.
Xuewei LI ; Xiaodong CHEN ; Yixuan ZHANG ; Tonglei ZHENG ; Lvzhen HUANG ; Yan LI ; Kai WANG
Environmental Health and Preventive Medicine 2025;30():50-50
BACKGROUND:
The objective of this study was to investigate the potential link between myopia in adolescents and exposure to per- and polyfluoroalkyl substances (PFASs).
METHODS:
This investigation included 1971 subjects with accessible PFAS level data, myopia status, and associated variables from four cycles of the National Health and Nutritional Examination Survey (NHANES). The investigation focused on specific PFAS compounds found in the serum, including perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS), chosen for their frequent detection. Owing to the skewed nature of the PFAS level data, the PFAS levels were log-transformed (Ln-PFAS) prior to analysis. Logistic regression, restricted cubic spline modeling, subgroup analysis, and sensitivity analysis were used to examine the associations between exposure to PFASs and the onset of myopia.
RESULTS:
PFOA levels were significantly associated with myopia risk (OR: 1.33; 95% CI: 1.05-1.69; P = 0.019). More specifically, with respect to the first quartile, the second quartile (ORQ2: 1.69; 95% CI: 1.16-2.46; P = 0.007), third quartile (ORQ3: 1.45; 95% CI: 1.03-2.03; P = 0.035), and highest quartile (ORQ4: 1.58; 95% CI: 1.12-2.21; P = 0.010) of participants presented with increased myopia risk. Mediation analysis revealed that PFOA and myopia risk were partially mediated by serum albumin (ALB), with a mediation percentage of 22.48% (P = 0.008). A nonlinear inverted U-shaped relationship was identified between the level of PFOA and myopia risk (P for nonlinearity = 0.005).
CONCLUSION
Our findings suggest a potential link between exposure to PFOA and the likelihood of myopia development in young individuals and a mediating effect of serum ALB on this relationship. Notably, PFOA was identified as a key PFAS significantly contributing to the observed link between PFAS exposure and myopia risk. The potential threat of PFOA to myopia should be examined further.
Humans
;
Fluorocarbons/adverse effects*
;
Myopia/blood*
;
Adolescent
;
Male
;
Female
;
Prevalence
;
Environmental Exposure/adverse effects*
;
Nutrition Surveys
;
Environmental Pollutants/adverse effects*
;
United States/epidemiology*
;
Alkanesulfonic Acids/blood*
;
Caprylates/blood*
;
Serum Albumin/metabolism*
;
Child
;
Sulfonic Acids
2.A review of human exposure to PFAS: substantial contribution from seafood.
Environmental Health and Preventive Medicine 2025;30():73-73
Per- and polyfluoroalkyl substances (PFAS) have recently been shown to affect human health at low levels in the blood, according to epidemiological evidence. Consequently, human exposure to these chemicals should be strictly controlled to prevent health risks. This review reports on the potential sources of PFAS using Japan as an example. Tap water has attracted attention as a source of exposure to PFAS. PFAS have also been detected in the air, in household dust, and in consumer products. Furthermore, in the general population, diet is the most common source of exposure, and there is particular concern about human exposure to PFAS accumulated in seafood. Continuous monitoring is important for appropriate management of exposure for both humans and the environment.
Seafood/toxicity*
;
Fluorocarbons/toxicity*
;
Japan
;
Drinking Water/standards*
;
Air Pollutants/toxicity*
;
Humans
;
Dust/analysis*
;
Environmental Exposure/standards*
;
Food Contamination/analysis*
;
Environmental Pollutants/toxicity*
;
Water Pollutants, Chemical/toxicity*
3.Association between Per and Polyfluoroalkyl Substance and Abdominal Fat Distribution: A Trait Spectrum Exposure Pattern and Structure-Based Investigation.
Zhi LI ; Shi Lin SHAN ; Chen Yang SONG ; Cheng Zhe TAO ; Hong QIAN ; Qin YUAN ; Yan ZHANG ; Qiao Qiao XU ; Yu Feng QIN ; Yun FAN ; Chun Cheng LU
Biomedical and Environmental Sciences 2025;38(1):3-14
OBJECTIVE:
To investigate the associations between eight serum per- and polyfluoroalkyl substances (PFASs) and regional fat depots, we analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 cycles.
METHODS:
Multiple linear regression models were developed to explore the associations between serum PFAS concentrations and six fat compositions along with a fat distribution score created by summing the concentrations of the six fat compositions. The associations between structurally grouped PFASs and fat distribution were assessed, and a prediction model was developed to estimate the ability of PFAS exposure to predict obesity risk.
RESULTS:
Among females aged 39-59 years, trunk fat mass was positively associated with perfluorooctane sulfonate (PFOS). Higher concentrations of PFOS, perfluorohexane sulfonate (PFHxS), perfluorodecanoate (PFDeA), perfluorononanoate (PFNA), and n-perfluorooctanoate (n-PFOA) were linked to greater visceral adipose tissue in this group. In men, exposure to total perfluoroalkane sulfonates (PFSAs) and long-chain PFSAs was associated with reductions in abdominal fat, while higher abdominal fat in women aged 39-59 years was associated with short-chain PFSAs. The prediction model demonstrated high accuracy, with an area under the curve (AUC) of 0.9925 for predicting obesity risk.
CONCLUSION
PFAS exposure is associated with regional fat distribution, with varying effects based on age, sex, and PFAS structure. The findings highlight the potential role of PFAS exposure in influencing fat depots and obesity risk, with significant implications for public health. The prediction model provides a highly accurate tool for assessing obesity risk related to PFAS exposure.
Humans
;
Fluorocarbons/blood*
;
Female
;
Adult
;
Middle Aged
;
Male
;
Environmental Pollutants/blood*
;
Abdominal Fat
;
Nutrition Surveys
;
Alkanesulfonic Acids/blood*
;
Obesity
;
Environmental Exposure
4.Correlation analysis between prenatal exposure of per-/polyfluoroalkyl compounds and neonatal outcome.
Chen Ye XU ; Wei Tong LI ; Yong Hong TIAN
Chinese Journal of Preventive Medicine 2023;57(3):362-370
Objective: To investigate the correlation between the prenatal exposure of per-/polyfluoroalkyl substances (PFASs) and the neonatal outcome. Methods: A total of 506 maternal infant cohort samples were collected in Hangzhou, Zhejiang province from 2020 to 2021. The exposure levels of seven PFASs in maternal serum before delivery were detected by solid-phase extraction-ultra performance liquid chromatography tandem mass spectrometry. Multivariable linear regression model was used to analyze the influence of prenatal exposure of PFASs on birth weight, birth length and Apgar score. Results: The maternal age, prenatal body mass index and gestation age were (31.3±4.3) years old, (26.7±3.2) kg/m2 and (265.0±28.3) days, respectively. The birth weight, birth length and scores of Apgar-1 and Apgar-5 were (3.1±0.8) kg, (49.3±2.9) cm, (9.88±0.47) points and (9.99±0.13) points, respectively. PFASs were widely distributed in maternal serum, with the highest concentration of (18.453±19.557) ng/ml, (6.756±9.379) ng/ml and (5.057±8.555) ng/ml for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and 6∶2 chlorinated polyfluorinated ether sulfonate (Cl-PFESA), respectively. Maternal age, parity and delivery mode were associated with the exposure level of PFASs (P<0.05). Subgroup analysis showed that PFOS had negative effects on birth weight (β=-0.958), birth length (β=-0.073) and Apgar-5 score (β=-0.288) for neonates in the low birth weight (LBW) group. 6∶2 Cl-PFESA and 8∶2 Cl-PFESA inhibited the birth weight (β=-0.926; β=-0.552) and length (β=-0.074; β=-0.045) of newborn in the LBW group. In addition, 4∶2 fluorotelomer sulfonate (FTS) was associated with increased birth weight (β=0.111) and decreased Apgar-5 score (β=-0.030) in the normal weight group. Conclusion: Prenatal exposure to PFASs is associated with birth weight, birth length and Apgar-5 score. It is necessary to continue to pay attention to the impact of PFASs on fetal growth and development through maternal-fetal transmission.
Pregnancy
;
Infant, Newborn
;
Female
;
Humans
;
Adult
;
Birth Weight
;
Prenatal Exposure Delayed Effects
;
Alkanesulfonic Acids/analysis*
;
Alkanesulfonates/analysis*
;
Fluorocarbons/analysis*
;
Ethers/analysis*
;
Ethyl Ethers/analysis*
;
Environmental Pollutants/analysis*
;
Maternal Exposure
6.Research on the establishment of standard limits for perfluorooctanoic acid and perfluorooctane sulfonate in the "Standards for Drinking Water Quality(GB5749-2022)"in China.
Jian Ying HU ; Shi Yi ZHANG ; Min YANG ; Hai Feng ZHANG ; Qi Yue KANG ; Wei AN ; Jia Yi HAN
Chinese Journal of Preventive Medicine 2023;57(6):815-822
Perfluorinated compounds, especially Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are widely detected in water environments in China. Considering the potential health risks of drinking water exposure routes, PFOA and PFOS have been added to the water quality reference index of the newly issued "Standards for Drinking Water Quality (GB5749-2022)", with limit values of 40 and 80 ng/L, respectively. This study analyzed and discussed the relevant technical contents for determining the limits of the hygiene standard, including the environmental existence level and exposure status of PFOA and PFOS, health effects, derivation of safety reference values, and determination of hygiene standard limits. It also proposed prospects for the future direction of formulating drinking water standards.
Humans
;
Water Quality
;
Drinking Water
;
Fluorocarbons/analysis*
;
Caprylates/analysis*
;
China
;
Water Pollutants, Chemical/analysis*
7.Carbon Chain Length Determines Inhibitory Potency of Perfluoroalkyl Sulfonic Acids on Human Placental 3β-Hydroxysteroid Dehydrogenase 1: Screening, Structure-Activity Relationship, and In Silico Analysis.
Lu Ming TANG ; Bai Ping MAO ; Bing Ru ZHANG ; Jing Jing LI ; Yun Bing TANG ; Hui Tao LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(11):1015-1027
OBJECTIVE:
This study aimed to compare 9 perfluoroalkyl sulfonic acids (PFSA) with carbon chain lengths (C4-C12) to inhibit human placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1), aromatase, and rat 3β-HSD4 activities.
METHODS:
Human and rat placental 3β-HSDs activities were determined by converting pregnenolone to progesterone and progesterone secretion in JEG-3 cells was determined using HPLC/MS-MS, and human aromatase activity was determined by radioimmunoassay.
RESULTS:
PFSA inhibited human 3β-HSD1 structure-dependently in the order: perfluorooctanesulfonic acid (PFOS, half-maximum inhibitory concentration, IC 50: 9.03 ± 4.83 μmol/L) > perfluorodecanesulfonic acid (PFDS, 42.52 ± 8.99 μmol/L) > perfluoroheptanesulfonic acid (PFHpS, 112.6 ± 29.39 μmol/L) > perfluorobutanesulfonic acid (PFBS) = perfluoropentanesulfonic acid (PFPS) = perfluorohexanesulfonic acid (PFHxS) = perfluorododecanesulfonic acid (PFDoS) (ineffective at 100 μmol/L). 6:2FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid) and 8:2FTS (1H, 1H, 2H, 2H-perfluorodecanesulfonic acid) did not inhibit human 3β-HSD1. PFOS and PFHpS are mixed inhibitors, whereas PFDS is a competitive inhibitor. Moreover, 1-10 μmol/L PFOS and PFDS significantly reduced progesterone biosynthesis in JEG-3 cells. Docking analysis revealed that PFSA binds to the steroid-binding site of human 3β-HSD1 in a carbon chain length-dependent manner. All 100 μmol/L PFSA solutions did not affect rat 3β-HSD4 and human placental aromatase activity.
CONCLUSION
Carbon chain length determines inhibitory potency of PFSA on human placental 3β-HSD1 in a V-shaped transition at PFOS (C8), with inhibitory potency of PFOS > PFDS > PFHpS > PFBS = PFPS = PFHxS = PFDoS = 6:2FTS = 8:2FTS.
Humans
;
Pregnancy
;
Female
;
Rats
;
Animals
;
Placenta
;
Progesterone/pharmacology*
;
Aromatase/pharmacology*
;
Cell Line, Tumor
;
Fluorocarbons
;
Alkanesulfonic Acids
;
Structure-Activity Relationship
;
Hydroxysteroid Dehydrogenases/pharmacology*
8.Research progress on pollen food allergy syndrome.
Shuang LIU ; Kai GUAN ; Jia YIN
Chinese Journal of Preventive Medicine 2023;57(9):1336-1341
Pollen food allergy syndrome (PFAS) is an IgE-mediated allergic reaction that occurs when some pollinosis patients ingest certain plant-derived food that contains cross-reactive allergenic components. PFAS is prevalent in both children and adult pollinosis patients. In most cases, PFAS symptoms are confined to the oropharynx and occur within several minutes after oral contact with food. Therefore, PFAS has been also referred as oral allergy syndrome (OAS). A small proportion of PFAS patients would experience systemic symptoms or anaphylaxis. Currently, the diagnosis of PFAS is mainly based on clinical history and allergic tests [skin prick tests and(or) serum specific IgE tests]. Oral provocation tests are used to verify atypical patients. Component-resolved diagnosis is essential for further precise diagnosis and treatment. Management options for PFAS include lifestyle adjustment, symptomatic medication, and immunotherapy. The efficacy and appropriate population for immunotherapy need further investigation. This article aims to update the knowledge on epidemiology, pathogenesis and clinical management of PFAS, thereby enhancing clinicians' understanding as well as treatment progress of this disease entity.
Adult
;
Child
;
Humans
;
Rhinitis, Allergic, Seasonal/therapy*
;
Syndrome
;
Food Hypersensitivity/therapy*
;
Pollen
;
Fluorocarbons
;
Immunoglobulin E
9.Research progress on pollen food allergy syndrome.
Shuang LIU ; Kai GUAN ; Jia YIN
Chinese Journal of Preventive Medicine 2023;57(9):1336-1341
Pollen food allergy syndrome (PFAS) is an IgE-mediated allergic reaction that occurs when some pollinosis patients ingest certain plant-derived food that contains cross-reactive allergenic components. PFAS is prevalent in both children and adult pollinosis patients. In most cases, PFAS symptoms are confined to the oropharynx and occur within several minutes after oral contact with food. Therefore, PFAS has been also referred as oral allergy syndrome (OAS). A small proportion of PFAS patients would experience systemic symptoms or anaphylaxis. Currently, the diagnosis of PFAS is mainly based on clinical history and allergic tests [skin prick tests and(or) serum specific IgE tests]. Oral provocation tests are used to verify atypical patients. Component-resolved diagnosis is essential for further precise diagnosis and treatment. Management options for PFAS include lifestyle adjustment, symptomatic medication, and immunotherapy. The efficacy and appropriate population for immunotherapy need further investigation. This article aims to update the knowledge on epidemiology, pathogenesis and clinical management of PFAS, thereby enhancing clinicians' understanding as well as treatment progress of this disease entity.
Adult
;
Child
;
Humans
;
Rhinitis, Allergic, Seasonal/therapy*
;
Syndrome
;
Food Hypersensitivity/therapy*
;
Pollen
;
Fluorocarbons
;
Immunoglobulin E
10.Maternal Perfluorinated Compound Exposure and Risk of Early Pregnancy Loss: A Nested Case-control Study.
Xin MI ; Shi Qi LIN ; Xiao Fen ZHANG ; Jia Jia LI ; Li Jun PEI ; Feng JIN ; Qi LIAO ; Li Min XIE ; Li Cong WEI ; Chan Juan HAO ; Ya Wei ZHANG ; Wei LI
Biomedical and Environmental Sciences 2022;35(2):174-179

Result Analysis
Print
Save
E-mail