1.Function of flavoprotein monooxygenases in natural product biosynthesis.
Meng-Ya CHENG ; Chang LIU ; He-Xin TAN
China Journal of Chinese Materia Medica 2025;50(1):71-77
Flavoprotein monooxygenases(FPMOs) and cytochrome P450(CYP450) oxygenases are pivotal monooxygenases in nature, catalyzing crucial redox reactions in diverse biological processes and contributing to the synthesis of highly complex natural products. While CYP450 enzymes have been extensively reported and studied, numerous FPMOs have also been discovered in past research endeavors, yet their classification, catalytic reactions, and catalytic mechanisms remain to be systematically analyzed. This paper comprehensively reviews the latest advancements in FPMOs research, initiating with a classification based on sequence similarities and distinct structural features. It delves into the catalytic characteristics of three subfamilies(FMO, BVMO, and NMO) within Class B FPMOs of plants, which are integral to biosynthetic pathways of natural products. Class B FPMOs encompass two canonical Rossmann fold motifs(FAD-binding GxGxxG and NADPH-binding GxGxxA), along with a central FMO recognition motif FxGxxxHxxxF/Y/W. These enzymes play a key role in regulating various metabolic routes and precisely modulate plant growth and development. Furthermore, the review summarizes the applications of Class B FPMOs of plants, showcasing through concrete examples their potential in synthesizing natural products such as auxins, indigo, and cyanogenic glycosides. These insights will broaden and deepen our understanding of FPMOs, fostering their transition from fundamental research to practical applications. More optimized biosynthetic pathways can be devised by leveraging FPMOs, conducive to the development of novel strategies and tools for agriculture, plant protection, natural product biosynthesis, and synthetic biology.
Biological Products/metabolism*
;
Mixed Function Oxygenases/chemistry*
;
Flavoproteins/chemistry*
;
Plants/metabolism*
;
Plant Proteins/chemistry*
;
Cytochrome P-450 Enzyme System/genetics*
2.Preparation of Recombinant Human Adenoviruses Labeled with miniSOG.
Xiaohui ZOU ; Rong XIAO ; Xiaojuan GUO ; Jianguo QU ; Zhuozhuang LU ; Tao HONG
Chinese Journal of Virology 2016;32(1):32-38
We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM.
Adenoviruses, Human
;
chemistry
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
metabolism
;
Flavoproteins
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Phototropins
;
chemistry
;
genetics
;
metabolism
;
Singlet Oxygen
;
chemistry
;
Staining and Labeling
;
Transfection
3.Expression and characterization of the flavoprotein domain of gp91phox.
Journal of Veterinary Science 2000;1(1):19-26
Truncated forms of gp91(phox) were expressed in E. coli in which the N-terminal hydrophobic transmembrane region was replaced with a portion of the highly soluble bacterial protein thioredoxin (TRX). TRX-gp91(phox) (306-569), which contains the putative FAD and NADPH binding sites, showed NADPH-dependent NBT (nitroblue tetrazolium) reductase activity, whereas TRX-gp91(phox) (304-423) and TRX-gp91(phox) (424-569) were inactive. Activity saturated at about a 1:1 molar ratio of FAD to TRX-gp91(phox) (306- 569), and showed the same Km for NADPH as that for superoxide generating activity by the intact enzyme. Activity was not inhibited by superoxide dismutase, indicating that it was not mediated by superoxide, but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium (DPI). In the presence of Rac1, the cytosolic regulatory protein p67(phox) stimulated the NBT reductase activity, but p47(phox) had no effect. Truncated p67(phox) containing the activation domain (residues 199- 210) stimulated activity approximately 2-fold, whereas forms mutated or lacking this region failed to stimulate the activity. Our data indicate that: 1) TRX-gp91(phox) (306-569) contains the binding sites for both pyridine and flavin nucleotides; 2) this flavoprotein domain shows NBT reductase activity; and 3) the flavin-binding domain of gp91(phox) is the target of regulation by the activation domain of p67(phox).
Animals
;
Cloning, Molecular
;
DNA Primers
;
Escherichia coli/genetics/metabolism
;
Flavoproteins/chemistry/genetics
;
Kinetics
;
Membrane Glycoproteins/chemistry/*genetics/isolation & purification
;
*NADPH Oxidase
;
Neutrophils/physiology
;
Polymerase Chain Reaction/methods
;
Recombinant Fusion Proteins/chemistry/isolation & purification/metabolism
;
Recombinant Proteins/chemistry/isolation & purification
;
Restriction Mapping
;
Sequence Deletion

Result Analysis
Print
Save
E-mail