1.Research progress in chemical constituents and pharmacological activities of Abelmoschi Corolla and prediction of its quality markers.
Shi-Han GUAN ; Chang LIU ; Xiao-Tong YAN ; Jin-Wei HAN ; Feng-Ting YIN ; Hui SUN ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(4):908-921
Abelmoschi Corolla, the dried corolla of Abelmoschus manihot, has anti-inflammatory, antioxidant, and anti-fibrosis activities. Its chemical constituents mainly include flavonoids, organic acids, steroids, and polysaccharides. This study reviewed the research progress in the chemical constituents and pharmacological activities of Abelmoschi Corolla in recent 20 years. According to the concept of quality marker(Q-marker), the Q-markers of Abelmoschi Corolla were predicted from plant phylogeny, chemical constituent specificity, traditional efficacy, chemical constituent measurability, and absorbed constituents. The primary Q-markers for Abelmoschi Corolla were anticipated to include quercetin-3'-O-β-D-glucopyranoside, gossypetin-8-O-β-D-glucuronide, isoquercetin, myricetin,quercetin, and hyperoside, with the aim of providing reference data for improving the quality evaluation system of Abelmoschi Corolla.
Abelmoschus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Flowers/chemistry*
;
Humans
;
Animals
;
Quality Control
;
Flavonoids/chemistry*
2.Icariin promotes alcohol-inhibited osteogenic differentiation of MC3T3-1-E1 cells by regulating LAP autophagy.
Qi ZENG ; Yue-Ping CHEN ; Shi-Lei SONG ; Yu LAI ; Hua-Hua WU
China Journal of Chinese Materia Medica 2025;50(3):590-599
This study investigated the mechanism of autophagy in the differentiation processes of MC3T3-E1 cells under osteogenic induction(physiological) and alcohol(AL) intervention(pathological), as well as the mechanism by which icariin(ICA) affected osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention. Osteogenic mineralized nodule staining confirmed that the cells could differentiate into osteoblasts. After determining the appropriate concentrations of AL and ICA using the CCK-8 assay, seven groups were set up in this study: complete medium(CM) group, osteogenic induction medium(OIM) group, OIM+0.25 mol·L~(-1) AL group, OIM+0.25 mol·L~(-1) AL+1×10~(-8) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-7) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-6) mol·L~(-1) ICA group, and OIM+0.25 mol·L~(-1) AL+1×10~(-5) mol·L~(-1) ICA group, with a culture period of 7 days. Alkaline phosphatase(ALP) staining was used to detect the relative ALP area. Western blot and RT-qPCR were employed to analyze the expression of osteogenesis-and autophagy-related proteins and mRNAs. Reactive oxygen species(ROS) staining was used to detect ROS levels, and apoptosis was assessed through mitochondrial membrane potential assays. The results showed that ICA increased the relative ALP area that had been reduced by AL intervention. AL down-regulated the expression levels of Wnt family member 1(Wnt1), along with the osteogenesis-related mRNAs Wnt1, β-catenin, Runt-related transcription factor 2(Runx2), osteoprotegerin(OPG), and ALP, thereby inhibiting osteogenic differentiation. ICA up-regulated the expression levels of the osteogenesis-related proteins and mRNAs that had been inhibited by AL, promoting osteogenic differentiation. AL inhibited typical autophagy, while ICA regulated Rubicon to suppress LC3-associated phagocytosis(LAP) and promote typical autophagy. ICA also reduced the ROS levels that were elevated by AL and decreased the apoptosis of osteoblasts induced by AL intervention. In conclusion, ICA can regulate Rubicon to inhibit LAP, promote typical autophagy, eliminate ROS, reduce apoptosis, and ultimately enhance the osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention by modulating the Wnt/β-catenin signaling pathway.
Autophagy/drug effects*
;
Animals
;
Osteogenesis/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Osteoblasts/metabolism*
;
Ethanol/pharmacology*
;
Flavonoids/pharmacology*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
3.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
4.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
5.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
6.The effects of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus based on RhoA/ROCK pathway.
Yao LU ; Lin SHI ; Le WANG ; Xiaoli LUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):992-999
Objective To investigate the effect and mechanism of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus (GDM). Methods Female rats fed with high-fat and high-sugar diet and male rats fed with ordinary diet were caged together to prepare pregnant rats, and the GDM rat model was established by intraperitoneal injection of streptozotocin (35 mg/kg). GDM rats were randomly divided into a model group, a fasudil (FA) (RhoA/RocK inhibitor) group (10 mg/kg), low-dose (100 mg/kg) and high-dose (200 mg/kg) baicalin groups, and a high-dose baicalin combined with LPA (RhoA/RocK activator) group (200 mg/kg baicalin+1 mg/kg LPA ), with 12 rats in each group. Another 12 pregnant rats fed with high-fat and high-sugar diet were selected as the control group. After 2 weeks of corresponding drug intervention in each group, the level of fasting blood glucose (FBG) was detected by blood glucose meter. The level of fasting insulin (FINS) in serum was detected by ELISA, and the insulin resistance index (HOMA-IR) was calculated. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) in serum, and the levels of immunomodulator tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-10 in peripheral blood were detected by the kit. The histopathological changes of liver were observed by HE staining. The proportion of T lymphocyte subsets in peripheral blood was detected by flow cytometry. The mRNA and protein expressions of Ras homolog gene family member A (RhoA), Rho associated coiled-coil forming protein kinase 1 (ROCK1), and ROCK2 in liver tissue were detected by real-time quantitative PCR and Western blot. Results Compared with the control group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the model group were higher; the level of HDL-C in serum, the percentage of IL-10 levels, CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were lower. Compared with the model group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the the FA group and low-dose and high-dose baicalin groups were lower; the level of HDL-C in serum, IL-10 level, the percentage of CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were higher. LPA could obviously weaken the improvement effects of baicalin on blood lipid metabolism and immune function in GDM rats. Conclusion Baicalin may improve blood lipid metabolism and immune function in GDM rats by inhibiting the RhoA/ROCK pathway.
Animals
;
Female
;
Diabetes, Gestational/metabolism*
;
Pregnancy
;
rho-Associated Kinases/genetics*
;
Flavonoids/pharmacology*
;
Rats
;
rhoA GTP-Binding Protein/genetics*
;
Lipid Metabolism/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
Rats, Sprague-Dawley
;
Blood Glucose/metabolism*
;
Lipids/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
rho GTP-Binding Proteins
7.Icariin targets PDE5A to regulate viability, DNA synthesis and DNA damage of spermatogonial stem cells and improves reproductive capacity.
Tian-Long LIAO ; Cai-Mei HE ; Di XIAO ; Zhi-Rong ZHANG ; Zuping HE ; Xiao-Ping YANG
Asian Journal of Andrology 2025;27(4):543-549
Icariin is a pure compound derived from Epimedium brevicornu Maxim, and it helps the regulation of male reproduction. Nevertheless, the role and underlying mechanisms of Icariin in mediating male germ cell development remain to be clarified. Here, we have demonstrated that Icariin promoted proliferation and DNA synthesis of mouse spermatogonial stem cells (SSCs). Furthermore, surface plasmon resonance iron (SPRi) and molecular docking (MOE) assays revealed that phosphodiesterase 5A (PDE5A) was an important target of Icariin in mouse SSCs. Mechanically, Icariin decreased the expression level of PDE5A. Interestingly, hydrogen peroxides (H 2 O 2 ) enhanced the expression level of phosphorylation H2A.X (p-H2A.X), whereas Icariin diminished the expression level of p-H2A.X and DNA damage caused by H 2 O 2 in mouse SSCs. Finally, our in vivo animal study indicated that Icariin protected male reproduction. Collectively, these results implicate that Icariin targets PDE5A to regulate mouse SSC viability and DNA damage and improves male reproductive capacity. This study thus sheds new insights into molecular mechanisms underlying the fate decisions of mammalian SSCs and offers a scientific basis for the clinical application of Icariin in male reproduction.
Male
;
Animals
;
Flavonoids/pharmacology*
;
Mice
;
Cyclic Nucleotide Phosphodiesterases, Type 5/drug effects*
;
DNA Damage/drug effects*
;
Cell Survival/drug effects*
;
Cell Proliferation/drug effects*
;
Spermatogonia/drug effects*
;
Reproduction/drug effects*
;
Adult Germline Stem Cells/metabolism*
;
DNA Replication/drug effects*
8.Icariin improves busulfan- and cyclophosphamide-induced reproductive function damage in male mice.
Yao WU ; Shan-Shan SHI ; Hai-Yan LIU ; Hao HUANG ; Xing-Hua SHI ; Jing HOU
National Journal of Andrology 2025;31(1):25-33
OBJECTIVE:
To comprehensively evaluate the effect of icariin in alleviating reproductive function damage (RFD) in male mice via in vitro and in vivo experiments.
METHODS:
We isolated Leydig cells from 60 KM male mice in vitro, and examined the toxic effect of icariin on the Leydig cells using Cell Counting Kit-8 (CCK-8). We equally randomized the mice into six groups: normal control, RFD model control (made by intraperitoneal injection of busulfan at 10 mg/kg combined with cyclophosphamide (CP) at 120 mg/kg), positive control, and low-, medium- and high-dose icariin. After modeling, we treated the mice in the positive control group with Wuziyanzong Pills and those in the low-, medium- and high-dose icariin groups by intragastrical administration of icariin at 20, 40 and 80 mg/kg-1, respectively, for 30 successive days. Then we obtained the weight and visceral coefficients of the reproductive organs, calculated the sperm count, observed the pathological changes in the testis tissue by HE staining, measured the serum testosterone (T) level by ELISA, determined the indexes of testicular oxidative stress and nitric oxide (NO) signaling pathway by colorimetric assay, and detected the expression levels of the pro-apoptotic genes Fas and Bax by qRT-PCR.
RESULTS:
CCK-8 assay confirmed that icariin had no toxic effect on the isolated Leydig cells of the mice, and could effectively reduce busulfan- and CP-induced cytotoxicity and promote the secretion of serum T. Icariin at 80 mg/kg significantly increased the visceral coefficient of the testis and promoted spermatogenesis (P<0.05), but had little effect on the visceral coefficient of the epididymis in the RFD model mice. Testicular histomorphometric observation revealed significantly improved testis structure, intact boundary membrane of seminiferous tubules and increased numbers of various types of spermatogenic cells of the model mice after treated with icariin. Compared with the mice in the model control group, those treated with high-dose icariin showed a significantly reduced content of malondialdehyde (MDA) (by 35.3%, P<0.01), elevated total antioxidant capacity (TAOC) and superoxide dismutase (T-SOD) activity (P<0.05), and decreased NO content and nitric oxide synthase (NOS) activity in the testis tissue (P<0.01). In addition, icariin exhibited an evident inhibitory effect on the expressions of the pro-apoptotic genes Bax and Fas.
CONCLUSION
Icariin can ameliorate oxidative stress-induced damage to the testicular function and protect spermatogenesis of male mice by elevating TAOC, decreasing NOS activity, inhibiting the NO level in the testis, and suppressing busulfan- and CP-induced apoptosis of testicular cells.
Animals
;
Male
;
Cyclophosphamide/adverse effects*
;
Mice
;
Busulfan/adverse effects*
;
Flavonoids/pharmacology*
;
Leydig Cells/drug effects*
;
Oxidative Stress/drug effects*
;
Testis/drug effects*
;
Apoptosis/drug effects*
;
Testosterone/blood*
9.Therapeutic effects of natural products on animal models of chronic obstructive pulmonary disease.
Xinru FEI ; Guixian YANG ; Junnan LIU ; Tong LIU ; Wei GAO ; Dongkai ZHAO
Journal of Central South University(Medical Sciences) 2025;50(6):1067-1079
Chronic obstructive pulmonary disease (COPD) currently lacks effective treatments to halt disease progression, making the search for preventive and therapeutic drugs a pressing issue. Natural products, with their accessibility, affordability, and low toxicity, offer promising avenues. Investigating the pharmacological effects and related signaling mechanisms of active components from natural products on COPD animal models induced by various triggers has become an important focus. In animal models induced by cigarette smoke, cigarette smoke combined with lipopolysaccharide (LPS), air pollution, elastase, bacterial or viral infections, the active compounds of natural products, such as flavonoids, terpenoids, and phenolics, can exert anti-inflammatory, antioxidant, mucus-regulating, and airway remodeling-inhibiting effects through key signaling pathways including nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK). These findings not only provide a theoretical basis for the clinical diagnosis and treatment of COPD but also point to new directions for future scientific research.
Pulmonary Disease, Chronic Obstructive/etiology*
;
Animals
;
Disease Models, Animal
;
Biological Products/pharmacology*
;
Humans
;
NF-kappa B/metabolism*
;
Flavonoids/pharmacology*
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Terpenes/pharmacology*
;
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Smoke/adverse effects*
;
Phenols/therapeutic use*
10.Fexolone inhibits neuronal ferroptosis through the Nrf2/HO-1/GPX4 pathway to alleviates sepsis-associated brain injury.
Rao SUN ; Jinyao ZHOU ; Yang JIAO ; Kaixuan NIU ; Cheng YUAN ; Ximing DENG
Chinese Critical Care Medicine 2025;37(5):452-457
OBJECTIVE:
To observe the protective effect of Fisetin on sepsis-associated brain injury and explore its possible mechanism from the perspective of ferroptosis.
METHODS:
Sprague-Dawley (SD) rats (6-8-week-old male) were randomly divided into three groups: sham operation group (Sham group), colonic ligation and puncture (CLP) induced sepsis model group (CLP group) and Fisetin preprocessing group (CLP+Fisetin group), with 18 rats in each group (12 for observing survival rate and 6 for indicator testing). The CLP+Fisetin group was given Fisetin solution 50 mg×kg-1×d-1 by gavage continuously for 5 days before CLP, with dimethyl sulfoxide (DMSO) as the solute, while Sham group and CLP group were given the same dose of DMSO. The model was established at 2 hours after the last gavage. The general condition of each group of rats were observed, and the 10-day mortality were record. The behavioral testing (new object recognition experiment, elevated cross maze experiment) were performed after 7 days of modeling. After 24 hours of modeling, nerve reflex scoring was performed, and then the rats were euthanized and brain tissue was collected. The pathological changes of brain tissue were observed under a microscope by hematoxylin-eosin (HE) staining, the deposition of iron ion in brain tissue was observed by Prussian blue staining. The content of iron in brain tissue was determined by tissue iron kit, and the content of malondialdehyde (MDA) in brain tissue was determined by colorimetry. The expressions of tumor necrosis factor-α (TNF-α), neuron damage marker S100β, nuclear factor E2-related factor 2 (Nrf2), heme oxygenases-1 (HO-1) and glutathione peroxidase 4 (GPX4) were detected by Western blotting.
RESULTS:
On day 10 post-operation, 12, 3, and 7 animals survived in the Sham group, CLP group, and CLP+Fisetin group, respectively. Compared with the Sham group, rats in the CLP group showed significantly decreased nerve reflex score, new object discrimination index and open arm dwell time. HE staining showed arranged disorderly of neuronal cells, cytoplasm deep staining, nuclear condensation, unclear structures, neuron loss, and significant inflammation in the hippocampus in the hippocampus. Prussian blue staining showed iron ion deposition in the brain tissue. The contents of iron and MDA in brain tissue were elevated, and the expressions of TNF-α and S100β were up-regulated, while the expressions of Nrf2, HO-1, and GPX4 were down-regulated. Compared with the CLP group, the CLP+Fisetin group showed significantly increased neurological reflex score (7.33±1.15 vs. 4.67±1.53), improved new object discrimination index (0.44±0.02 vs. 0.32±0.04), and longer open arm dwell time (minutes: 78.33±9.29 vs. 41.15±9.64). Neuronal cells in the hippocampus were more organized, with less cytoplasmic staining, nuclear condensation, reduced neuronal loss, and fewer inflammatory cells. Iron ion deposition was reduced, and the contents of iron ions and MDA in brain tissue were decreased [iron ion (μg/g): 151.27±14.90 vs. 224.69±17.64, MDA (μmol/g): 470.0±44.3 vs. 709.3±65.4]. The expressions of TNF-α and S100β were significantly decreased (TNF-α/GAPDH: 0.651±0.060 vs. 0.896±0.022, S100β/GAPDH: 0.685±0.032 vs. 0.902±0.014), while the expressions of Nrf2, HO-1, and GPX4 were significantly increased (Nrf2/GAPDH: 0.708±0.108 vs. 0.316±0.112, HO-1/GAPDH: 0.694±0.022 vs. 0.538±0.024, GPX4/GAPDH: 0.620±0.170 vs. 0.317±0.039). All differences were statistically significant (all P < 0.05).
CONCLUSION
Fisetin pretreatment can inhibit ferroptosis and reduce sepsis-associated brain injury by Nrf2/HO-1/GPX4 pathway.
Animals
;
Ferroptosis/drug effects*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Sepsis/complications*
;
Male
;
Rats
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Neurons/drug effects*
;
Signal Transduction
;
Brain Injuries/metabolism*
;
Flavonols
;
Flavonoids/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Heme Oxygenase (Decyclizing)

Result Analysis
Print
Save
E-mail