1.Molecular mechanism of verbascoside in promoting acetylcholine release of neurotransmitter.
Zhi-Hua ZHOU ; Hai-Yan XING ; Yan LIANG ; Jie GAO ; Yang LIU ; Ting ZHANG ; Li ZHU ; Jia-Long QIAN ; Chuan ZHOU ; Gang LI
China Journal of Chinese Materia Medica 2025;50(2):335-348
The molecular mechanism of verbascoside(OC1) in promoting acetylcholine(ACh) release in the pathogenesis of Alzheimer's disease(AD) was studied. Adrenal pheochromocytoma cells(PC12) of rats induced by β-amyloid protein(1-42)(Aβ_(1-42)) were used as AD models in vitro and were divided into control group, model group(Aβ_(1-42) 10 μmol·L~(-1)), OC1 treatment group(2 and 10 μg·mL~(-1)). The effect of OC1 on phosphorylated proteins in AD models was analyzed by whole protein phosphorylation quantitative omics, and the selectivity of OC1 for calcium channel subtypes was virtually screened in combination with computer-aided drug design. The fluorescence probe Fluo-3/AM was used to detect Ca~(2+) concentration in cells. Western blot analysis was performed to detect the effects of OC1 on the expression of phosphorylated calmodulin-dependent protein kinase Ⅱ(p-CaMKⅡ, Thr286) and synaptic vesicle-related proteins, and UPLC/Q Exactive MS was used to detect the effects of OC1 on ACh release in AD models. The effects of OC1 on acetylcholine esterase(AChE) activity in AD models were detected. The results showed that the differentially modified proteins in the model group and the OC1 treatment group were related to calcium channel activation at three levels: GO classification, KEGG pathway, and protein domain. The results of molecular docking revealed the dominant role of L-type calcium channels. Fluo-3/AM fluorescence intensity decreased under the presence of Ca~(2+) chelating agent ethylene glycol tetraacetic acid(EGTA), L-type calcium channel blocker verapamil, and N-type calcium channel blocker conotoxin, and the effect of verapamil was stronger than that of conotoxin. This confirmed that OC1 promoted extracellular Ca~(2+) influx mainly through its interaction with L-type calcium channel protein. In addition, proteomic analysis and Western blot results showed that the expression of p-CaMKⅡ and downstream vesicle-related proteins was up-regulated after OC1 treatment, indicating that OC1 acted on vesicle-related proteins by activating CaMKⅡ and participated in synaptic remodeling and transmitter release, thus affecting learning and memory. OC1 also decreased the activity of AChE and prolonged the action time of ACh in synaptic gaps.
Animals
;
Rats
;
Glucosides/administration & dosage*
;
Acetylcholine/metabolism*
;
Alzheimer Disease/genetics*
;
PC12 Cells
;
Phenols/chemistry*
;
Neurotransmitter Agents/metabolism*
;
Drugs, Chinese Herbal
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics*
;
Humans
;
Phosphorylation/drug effects*
;
Calcium/metabolism*
;
Polyphenols
2.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
3.Mechanism of total flavone of Abelmoschus manihot in treating ulcerative colitis and depression via intestinal flora-glycerophospholipid metabolism- macrophage polarization pathway.
Chang-Ye LU ; Xiao-Min YUAN ; Lin-Hai HE ; Jia-Rong MAO ; Yu-Gen CHEN
China Journal of Chinese Materia Medica 2025;50(5):1286-1297
This study delves into the mechanism of total flavone of Abelmoschus manihot(TFA) in treating ulcerative colitis(UC) and depression via inhibiting M1 polarization of macrophages and reshaping intestinal flora and glycerolphospholipid metabolism. The study established a mouse model of UC and depression induced by chronic restraint stress(CRS) and dextran sulfate sodium(DSS). The fecal microbiota transplantation(FMT) experiment after TFA intervention was conducted. Mice in the FMT donor group were modeled and treated, and fecal samples were taken to prepare the bacterial solution. Mice in the FMT receptor group were treated with antibiotic intervention, and then administered bacterial solution by gavage from mice in the donor group, followed by UC depression modeling. After the experiment, behavioral tests were conducted to evaluate depressive-like behaviors by measuring the levels of 5-hydroxytryptamine(5-HT) and brain-derived neurotrophic factor(BDNF) in the hippocampus of mice. The levels of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and interleukin-1β(IL-1β)in the brain and colon tissue of mice were also measured, and the polarization status of macrophages was evaluated by measuring the mRNA levels of CD86 and CD206. 16S ribosomal RNA(16S rRNA) sequencing technology was used to analyze changes in the intestinal flora of mice. Wide target lipidomics was used to detect serum lipid metabolite levels in mice after FMT,and correlation analysis was conducted between lipids and differential intestinal flora significantly regulated by TFA. In vitro experiments, representative glycerophospholipid metabolites and glycerophospholipid inhibitors were used to intervene in Raw264.7 macrophages, and the mRNA levels of TNF-α,IL-6,IL-1β,CD86,and CD206 were detected. The results showed that TFA and FMT after intervention could significantly improve depressive-like behavior and intestinal inflammation in mice with UC and depression, significantly downregulate pro-inflammatory cytokines and CD86 mRNA expression in brain and colon tissue, inhibiting M1 polarization of macrophages, and significantly upregulate CD206 mRNA expression, promoting M2 polarization of macrophages. In addition, the high-dose group had a more significant effect. After TFA intervention, FMT significantly corrected the metabolic disorder of glycerophospholipids in mice with UC and depression, and there was a significant correlation between differential intestinal flora and glycerophospholipids. In vitro experiments showed that glycerophospholipid metabolites, especially lysophosphatidylcholine(LPC),significantly upregulated pro-inflammatory cytokines and CD86 mRNA expression, promote M1 polarization of macrophages, while glycerophospholipid inhibitors had the opposite effect. The results indicate that TFA effectively treats depression and UC by correcting intestinal flora dysbiosis and reshaping glycerophospholipid metabolism, thereby inhibiting M1 polarization of macrophages.
Animals
;
Mice
;
Gastrointestinal Microbiome/drug effects*
;
Abelmoschus/chemistry*
;
Macrophages/metabolism*
;
Colitis, Ulcerative/immunology*
;
Flavones/administration & dosage*
;
Male
;
Depression/genetics*
;
Glycerophospholipids/metabolism*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
4.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
5.Vitexin-4 ″-O-glucoside alleviates acetaminophen-induced acute liver injury.
Fan DONG ; Shanglei LAI ; Jiannan QIU ; Xiaobing DOU
Journal of Zhejiang University. Medical sciences 2025;54(3):307-317
OBJECTIVES:
To explore the protective effect of vitexin-4 ″-O-glucoside (VOG) against acetaminophen-induced acute liver injury in mice and its underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 4 groups: normal control group, model control group, low-dose group of VOG (30 mg/kg), and high-dose group of VOG (60 mg/kg). Acute liver injury was induced by intraperitoneal injection of acetaminophen (500 mg/kg). VOG was administrated by gavage 2 h before acetaminophen treatment in VOG groups. The protective effect of VOG against acute liver injury was evaluated by detecting alanine transaminase (ALT), aspartate transaminase (AST) levels and hematoxylin and eosin staining. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity in liver were detected to evaluate the hepatic oxidative stress. The expression levels of tumor necrosis factor (TNF)-α, Il-1β, and Il-6 in liver were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of phosphorylated c-jun N-terminal kinase (JNK)/JNK, phosphorylated p38/p38, inositol-requiring enzyme 1 alpha (IRE-1α), X-box binding protein 1s (XBP1s), and glucose-regulated protein 78 (GRP78) in liver were detected by Western blotting. An endoplasmic reticulum stress model was established in AML-12 cells using tunicamycin. Cell viability was assessed using the CCK-8 assay, and the degree of cell damage was detected by lactate dehydrogenase (LDH) assay. The gene expression levels of Ire-1α, Xbp1s, and Grp78 in the cells were detected using qRT-PCR.
RESULTS:
In the animal experiments, compared with the model control group, VOG significantly improved plasma ALT and AST levels, liver MDA content, as well as SOD and CAT activities. VOG also reduced the expression levels of Tnf-α, Il-1β, and Il-6 in the liver, and improved protein phosphorylation levels of JNK and p38, as well as the protein expression levels of IRE-1α, XBP1s, and GRP78. In cell experiments, VOG pretreatment enhanced cell viability, reduced LDH release and decreased the mRNA expression of Ire-1α, Xbp1s, and Grp78.
CONCLUSIONS
VOG can suppress inflammation and oxidative stress, and alleviate acetaminophen-induced acute liver injury in mice by suppressing endoplasmic reticulum stress and modulating the MAPK signaling pathway.
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Acetaminophen/adverse effects*
;
Mice, Inbred C57BL
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Glucosides/therapeutic use*
;
Oxidative Stress/drug effects*
;
Male
;
Apigenin/therapeutic use*
;
Liver/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Endoplasmic Reticulum Stress/drug effects*
;
X-Box Binding Protein 1
;
Endoribonucleases/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Protein Serine-Threonine Kinases
6.Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications.
Chinese journal of integrative medicine 2025;31(6):566-576
The global prevalence of diabetes mellitus (DM) and its complications has been showing an upward trend in the past few decades, posing an increased economic burden to society and a serious threat to human life and health. Therefore, it is urgent to investigate the effectiveness of complementary and alternative therapies for DM and its complications. Luteolin is a kind of polyphenol flavonoid with widely existence in some natural resources, as a safe dietary supplement, it has been widely studied and reported in the treatment of DM and its complications. This review demonstrates the therapeutic potential of luteolin in DM and its complications, and elucidates the action mode of luteolin at the molecular level. It is characterized by anti-inflammatory, antioxidant, and neuroprotective effects. In detail, luteolin can not only improve endothelial function, insulin resistance and β-cell dysfunction, but also inhibit the activities of dipeptidyl peptidase-4 and α-glucosidase. However, due to the low water solubility and oral bioavailability of luteolin, its application in the medical field is limited. Therefore, great importance should be attached to the joint application of luteolin with current advanced science and technology. And more high-quality human clinical studies are needed to clarify the effects of luteolin on DM patients.
Humans
;
Luteolin/pharmacology*
;
Diabetes Mellitus/drug therapy*
;
Diabetes Complications/drug therapy*
;
Animals
;
Antioxidants/therapeutic use*
7.Moslosooflavone ameliorates dextran sulfate sodium-induced colitis in mice by suppressing intestinal epithelium apoptosis via inhibiting the PI3K/AKT signaling pathway.
Fei CHU ; Xiaohua CHEN ; Bowen SONG ; Jingjing YANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(4):819-828
OBJECTIVES:
To investigate the effect of moslosooflavone (MOS) for ameliorating dextran sulfate sodium (DSS)-induced colitis in mice and the underlying molecular mechanism.
METHODS:
C57BL/6J mice with or without DSS exposure in the drinking water were both randomized into two groups for treatment with intraperitoneal injections with MOS (200 mg/kg) or normal saline for 7 days (n=6). Disease severity of the mice was assessed by observing changes in body weight, colon length, histopathology (HE staining), intestinal barrier function, and TUNEL staining. In the in vitro studies, lipopolysaccharide (LPS)-stimulated mouse colon organoids were treated with MOS (120 μmol/L) for 24 h, and the changes in barrier dysfunction and inflammation were analyzed. Network pharmacology and Western blotting were employed to identify functional pathways and apoptotic protein regulation associated with the therapeutic effect of MOS on colitis.
RESULTS:
In the mouse models of DSS-indcued colitis, MOS treatment significantly reduced body weight loss, disease activity index (DAI) scores and colon shortening, ameliorated colonic histopathological changes and inflammation, and lowered pro-inflammatory cytokine levels (TNF-α, IL-1β, IL-6, and IFN-γ). MOS effectively restored intestinal barrier integrity in the mice by reducing serum FITC-dextran and I-FABP concentrations while enhancing the tight junction proteins (ZO-1 and claudin-1). In the colon organoids, MOS significantly suppressed LPS-induced inflammatory responses and epithelial barrier disruption. Western blotting revealed that MOS downregulated C-caspase-3 and BAX and upregulated Bcl-2 expressions in both models. Mechanistically, MOS suppressed PI3K and AKT phosphorylation in both DSS-treated mouse colonic tissues and LPS-stimulated organoids.
CONCLUSIONS
MOS alleviates experimental colitis in mice by inhibiting intestinal epithelial apoptosis via inhibiting the PI3K/AKT pathway, thereby restoring intestinal barrier integrity and reducing inflammation.
Animals
;
Dextran Sulfate
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Intestinal Mucosa/metabolism*
;
Apoptosis/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Flavones/pharmacology*
;
Male
8.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
9.Natural diosmin alleviating obesity and nonalcoholic fatty liver disease by regulating the activating the AMP-activated protein kinase (AMPK) pathway.
Can LIU ; Siyu HAO ; Mengdi ZHANG ; Xueyu WANG ; Baiwang CHU ; Tingjie WEN ; Ruoyu DANG ; Hua SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):863-870
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are linked to numerous chronic conditions, including cardiovascular disease, atherosclerosis, chronic kidney disease, and type II diabetes. Previous research identified the natural flavonoid diosmin, derived from Chrysanthemum morifolium, as a regulator of glucose metabolism. However, its effects on lipid metabolism and underlying mechanisms remained unexplored. The AMP-activated protein kinase (AMPK) pathway serves a critical function in glucose and lipid metabolism. The relationship between diosmin and the AMPK pathway has not been previously documented. This investigation examined diosmin's capacity to reduce lipid content through AMPK pathway activation in hepatoblastoma cell line G2 (HepG2) and 3T3-L1 cells. The study revealed that diosmin inhibits lipogenesis, indicating its potential as an anti-obesity agent in obese mice. Moreover, diosmin demonstrated effective MASLD alleviation in vivo. These findings suggest that diosmin may represent a promising therapeutic candidate for treating obesity and MASLD.
Diosmin/administration & dosage*
;
Animals
;
AMP-Activated Protein Kinases/genetics*
;
Humans
;
Non-alcoholic Fatty Liver Disease/enzymology*
;
Mice
;
Obesity/enzymology*
;
Hep G2 Cells
;
Male
;
3T3-L1 Cells
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Lipid Metabolism/drug effects*
;
Chrysanthemum/chemistry*
;
Lipogenesis/drug effects*
10.Advances in the regulation of gut microbiota metabolites by traditional Chinese medicine in the treatment of diseases.
Deyi YANG ; Jinghan LIN ; Tao WANG ; Hongwei LIU
Chinese Journal of Biotechnology 2025;41(6):2236-2255
Traditional Chinese medicine (TCM) plays an important role in preventing and treating diseases and improving human health. However, the complex bioactive components and regulation of signaling pathway and network restrict the elucidation of the mechanisms of action of TCM. A human being is regarded as a super "symbiont" composed of body cells and commensal microorganisms. Gut microbiota is the core commensal microorganism system of a human body, being considered as "the second genome" and the new "organ". Alterations in gut microbiota reflect the state of body health and progression of diseases. Recent investigations have revealed that the TCM rich in polysaccharides and polyphenols can modulate gut microbiota metabolites to rehabilitate gut homeostasis, thus ameliorating diseases via regulating gut-liver axis or gut-brain axis. This review summarizes the causal relationship and mechanisms of action of TCM in the treatment of diseases from the perspective of gut microbiota metabolites. Our findings are expected to provide new insights into the mechanisms of TCM in preventing and treating diseases and guidance for TCM-based drug discovery in the future.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Polyphenols/pharmacology*
;
Polysaccharides/pharmacology*

Result Analysis
Print
Save
E-mail