1.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
2.Hesperetin Relaxes Depolarizing Contraction in Human Umbilical Vein by Inhibiting L-Type Ca2+ Channel.
Kritsana TIPCOME ; Wattana B WATANAPA ; Katesirin RUAMYOD
Chinese journal of integrative medicine 2025;31(5):412-421
OBJECTIVE:
To study hesperetin-induced vasorelaxation after depolarizing contraction in human umbilical veins (HUVs) to elucidate the role of L-type Ca2+ channel (LTCC) and related signaling pathway.
METHODS:
Isometric tension recording was performed in HUV rings pre-contracted with K+. Hesperetin relaxing mechanism was investigated using a LTCC opener (BayK8644) and blockers of cyclic nucleotides and phosphodiesterases (PDEs). Whole-cell patch-clamping in A7r5 cells, a rat vascular smooth muscle cell line, was performed to study the effect of hesperetin on LTCC current.
RESULTS:
After depolarizing precontraction, hesperetin induced HUV relaxation concentration-dependently and endothelium-independently; 1 mmol/L hesperetin reduced denuded HUV ring tension by 68.7% ± 4.3% compared to matching vehicle, osmolality, and time controls (P<0.0001). Importantly, hesperetin competitively inhibited BayK8644-induced contraction, shifting the half maximal effective concentration of BayK8644 response from 1.08 nmol/L [95% confidence interval (CI) 0.49-2.40] in vehicle control to 11.30 nmol/L (95% CI 5.45-23.41) in hesperetin (P=0.0001). Moreover, hesperetin elicited further vasorelaxation in denuded HUV rings pretreated with inhibitors of soluble guanylyl cyclase, adenylyl cyclase, PDE3, PDE4, and PDE5 (P<0.01), while rings pretreated with PDE1 inhibitors could not be relaxed by hesperetin (P>0.05). However, simultaneously applying inhibitors of soluble guanylyl cyclase and adenylyl cyclase could not inhibit hesperetin's effect (P>0.05). In whole-cell patch-clamping, hesperetin rapidly decreased LTCC current in A7r5 cells to 66.7% ± 5.8% (P=0.0104).
CONCLUSIONS
Hesperetin diminishes depolarizing contraction of human vascular smooth muscle through inhibition of LTCC, and not cyclic nucleotides nor PDEs. Our evidence supports direct LTCC interaction and provides additional basis for the use of hesperetin and its precursor hesperidin as vasodilators and may lead to future vasodilator drug development as a treatment alternative for cardiovascular diseases.
Hesperidin/pharmacology*
;
Humans
;
Calcium Channels, L-Type/metabolism*
;
Umbilical Veins/physiology*
;
Muscle Contraction/drug effects*
;
Animals
;
Rats
;
Calcium Channel Blockers/pharmacology*
;
Vasodilation/drug effects*
;
Muscle Relaxation/drug effects*
3.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
4.Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis.
Ke-Xiang SUN ; Wei-Shan TAN ; Hao-Yue WANG ; Jia-Min GAO ; Shu-Yun WANG ; Man-Li XIE ; Wan-Li DENG
Chinese journal of integrative medicine 2025;31(6):529-540
OBJECTIVE:
To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.
METHODS:
In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
RESULTS:
Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function.
CONCLUSION
Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Hesperidin/therapeutic use*
;
Colorectal Neoplasms/metabolism*
;
Glycolysis/drug effects*
;
Animals
;
Humans
;
Apoptosis/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glucose/metabolism*
;
Cell Cycle/drug effects*
;
Mice, Inbred BALB C
;
Mice
;
HCT116 Cells
;
Lactic Acid
5.Therapeutic effect of baicalein as an antiparasitic agent against Toxoplasma gondii in vitro and in vivo.
Songrui WU ; Yingmei LAI ; Zhong'ao ZHANG ; Jianzu DING ; Shaohong LU ; Huayue YE ; Haojie DING ; Xunhui ZHUO
Journal of Zhejiang University. Science. B 2025;26(11):1086-1102
The most common medications for the treatment of zoonotic toxoplasmosis are pyrimethamine and sulfadiazine, which may cause serious undesirable side effects. Thus, there is an urgent need to develop novel therapeutics. Baicalein (BAI, C15H10O5) has been shown to perform well against protozoan parasites including Leishmania and Cryptosporidium. In this study, the inhibition efficacy of BAI on Toxoplasma gondii was evaluated using plaque, invasion, and intracellular proliferation assays. BAI effectively inhibited T. gondii (half-maximum inhibitory concentration (IC50)=6.457×10-5 mol/L), with a reduced invasion rate (33.56%) and intracellular proliferation, and exhibited low cytotoxicity (half-maximum toxicity concentration (TC50)=5.929×10-4 mol/L). Further investigation using a mouse model shed light on the inhibitory efficacy of BAI against T. gondii, as well as the potential mechanisms underlying its anti-parasitic effects. The survival time of T. gondii-infected ICR mice treated with BAI was remarkably extended, and their parasite burdens in the liver and spleen were greatly reduced compared with those of the negative control group. Histopathological examination of live sections revealed effective therapeutic outcomes in the treatment groups, with no notable pathological alterations observed. Furthermore, alterations in cytokine levels indicated that BAI not only effectively suppressed the growth of T. gondii but also prevented excessive inflammation in mice. Collectively, these findings underscore the significant inhibitory efficacy of BAI against T. gondii, positioning it as a promising alternative therapeutic agent for toxoplasmosis.
Animals
;
Toxoplasma/drug effects*
;
Flavanones/therapeutic use*
;
Mice
;
Antiparasitic Agents/therapeutic use*
;
Mice, Inbred ICR
;
Toxoplasmosis/drug therapy*
;
Female
6.Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway.
Wen-Yan ZHOU ; Jian-Kui DU ; Hong-Hong LIU ; Lei DENG ; Kai MA ; Jian XIAO ; Sheng ZHANG ; Chang-Nan WANG
Journal of Integrative Medicine 2025;23(5):560-575
OBJECTIVE:
Baicalein has been reported to have wide therapeutic effects that act through its anti-inflammatory activity. This study examines the effect and mechanism of baicalein on sepsis-induced cardiomyopathy (SIC).
METHODS:
A thorough screening of a small library of natural products, comprising 100 diverse compounds, was conducted to identify the most effective drug against lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. The core target proteins and their associated signaling pathways involved in baicalein's efficacy against LPS-induced myocardial injury were predicted by network pharmacology.
RESULTS:
Baicalein was identified as the most potent protective agent in LPS-exposed H9C2 cardiomyocytes. It exhibited a dose-dependent inhibitory effect on cell injury and inflammation. In the LPS-induced septic mouse model, baicalein demonstrated a significant capacity to mitigate LPS-triggered myocardial deficits, inflammatory responses, and ferroptosis. Network pharmacological analysis and experimental confirmation suggested that hypoxia-inducible factor 1 subunit α (HIF1-α) is likely to be the crucial factor in mediating the impact of baicalein against LPS-induced myocardial ferroptosis and injury. By combining microRNA (miRNA) screening in LPS-treated myocardium with miRNA prediction targeting HIF1-α, we found that miR-299b-5p may serve as a regulator of HIF1-α. The reduction in miR-299b-5p levels in LPS-treated myocardium, compared to the control group, was reversed by baicalein treatment. The reverse transcription quantitative polymerase chain reaction, Western blotting, and dual-luciferase reporter gene analyses together identified HIF1-α as the target of miR-299b-5p in cardiomyocytes.
CONCLUSION
Baicalein mitigates SIC at the miRNA level, suggesting the therapeutic potential of it in treating SIC through the regulation of miR-299b-5p/HIF1-α/ferroptosis pathway. Please cite this article as: Zhou WY, Du JK, Liu HH, Deng L, Ma K, Xiao J, Zhang S, Wang CN. Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway. J Integr Med. 2025; 23(5):560-575.
Flavanones/pharmacology*
;
Animals
;
MicroRNAs/genetics*
;
Lipopolysaccharides
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Ferroptosis/drug effects*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Mice, Inbred C57BL
;
Cardiomyopathies/etiology*
;
Cell Line
;
Sepsis/complications*
7.Platycodon grandiflorus polysaccharides combined with hesperidin exerted the synergistic effect of relieving ulcerative colitis in mice by modulating PI3K/AKT and JAK2/STAT3 signaling pathways.
Yang LIU ; Quanwei SUN ; Xuefei XU ; Mengmeng LI ; Wenheng GAO ; Yunlong LI ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):848-862
Ulcerative colitis (UC) is a chronic inflammatory disorder with a complex etiology, characterized by intestinal inflammation and barrier dysfunction. Platycodon grandiflorus polysaccharides (PGP), the primary component of Platycodon grandiflorus, and hesperidin (Hesp), a prominent active component in Citrus aurantium L. (CAL), have both demonstrated anti-inflammatory properties. This study aims to elucidate the underlying mechanism of the synergistic effect of PGP combined with Hesp on UC, focusing on the coordinated interaction between the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways. A mouse model of UC induced by dextran sulfate sodium (DSS) and a cell model using lipopolysaccharide (LPS)-induced RAW264.7/IEC6 cells were employed to investigate the in vitro and in vivo anti-inflammatory effects of PGP combined with Hesp on UC and its potential mechanism of action. The results indicated that compared to the effects of either drug alone, the combination of PGP and Hesp significantly modulated inflammatory factor levels, inhibited oxidative stress, regulated colonic mucosal immunity, suppressed apoptosis, and restored intestinal barrier function in vitro and in vivo. Further in vitro studies revealed that PGP significantly inhibited the PI3K/AKT signaling pathway, while Hesp significantly inhibited the JAK2/STAT3 signaling pathway. The use of inhibitors and activators targeting both pathways validated the synergistic effects of PGP combined with Hesp on the PI3K/AKT and JAK2/STAT3 signaling pathways. These findings suggest that PGP combined with Hesp exhibits a synergistic effect on DSS-induced colitis, potentially mediated through the phosphatase and tensin homolog (PTEN)/PI3K/AKT and interleukin-6 (IL-6)/JAK2/STAT3 signaling pathways.
Animals
;
STAT3 Transcription Factor/genetics*
;
Janus Kinase 2/genetics*
;
Polysaccharides/administration & dosage*
;
Colitis, Ulcerative/chemically induced*
;
Mice
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drug Synergism
;
Male
;
Hesperidin/administration & dosage*
;
Platycodon/chemistry*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Disease Models, Animal
;
RAW 264.7 Cells
;
Mice, Inbred C57BL
8.Investigating the protective effect of naringenin on hydrogen peroxide induced oxidative damage of human periodontal ligament stem cells by regulating the forkhead box protein O-1/β-catenin pathway.
Li ZHANG ; Shiyuan PENG ; Feiyang TANG ; Jingwei JIAN ; Shuosheng YUAN ; Xiaomei XU
West China Journal of Stomatology 2025;43(4):559-569
OBJECTIVES:
Investigating the protective effect of naringenin (NAR) on the osteogenic potential of human periodontal ligament stem cells (hPDLSCs) under oxidative stress and its related mechanisms.
METHODS:
The oxidative damage model of hPDLSCs was established using hydrogen peroxide (H2O2) andthe hPDLSCs were treated with different concentrations of NAR and 0.5 μmol/L forkhead box protein O-1 (FOXO1) inhibitor AS1842856. After that, the cell counting kit-8 (CCK8) was used to determine the optimal concentrations of H2O2 and NAR. The alkaline phosphatase (ALP) staining and real time fluorescent quantitative reverse transcription polymerase chain reaction (qRT-PCR) were employed to assess the expression of ALP, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) in hPDLSCs of each group. The enzyme-linked immunosorbent assay (ELISA) and 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining were utilized to evaluate the expression of reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) in hPDLSCs. Meanwhile, qRT-PCR and western blot were used to detect the expression levels of FOXO1 and β-catenin, both are pathway related genes and proteins.
RESULTS:
H2O2 exposure led to an increase in oxidative damage in hPDLSCs, characterized by a rise in intracellular ROS levels and increased expression of MDA and LDH (P<0.05). At the same time, the osteogenic differentiation ability of hPDLSCs decreased, as evidenced by lighter ALP staining and reduced expression levels of osteogenic differentiation-related genes ALP, RUNX2 and OCN (P<0.05). Co-treatment with NAR alleviated the oxidative damage in hPDLSCs, enhanced their antioxidant capacity, and restored their osteogenic ability. The FOXO1 inhibitor AS1842856 downregulated the expression of β-catenin (P<0.05) and significantly diminished both the antioxidant effect of NAR and its ability to restore osteogenesis (P<0.05).
CONCLUSIONS
NAR can enhance the antioxidant capacity of hPDLSCs by activating the FOXO1/β-catenin signaling pathway within hPDLSCs, thereby mitigating oxidative stress damage and alleviating the loss of osteogenic capacity.
Humans
;
Oxidative Stress/drug effects*
;
Periodontal Ligament/cytology*
;
Hydrogen Peroxide
;
Forkhead Box Protein O1/metabolism*
;
Stem Cells/cytology*
;
Flavanones/pharmacology*
;
beta Catenin/metabolism*
;
Osteogenesis/drug effects*
;
Signal Transduction
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Alkaline Phosphatase/metabolism*
;
Osteocalcin/metabolism*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
9.Effect of baicalein regulating miR-7 on autophagy in human gastric cancer BGC-823 cells and its mechanism of action.
Meixin WEN ; Jialiang BU ; Guangyuan YAO ; Shengjun ZHANG ; Minghua CUI ; Yingshi PIAO
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):990-997
Objective To investigate the effect of baicalein (BAI) on autophagy of gastric cancer cell line BGC-823 cells by upregulating microRNA-7-5p (miR-7) and its possible mechanism. Methods The MTT method was used to screen the optimal drug concentration of BGC-823 cells treated with BAI. Real-time quantitative PCR was used to detect the transfection efficiency of BGC-823 cell line stably transfected with miR-7. The experiment was divided into control group (mimic-NC), miR-7 group (miR-7 mimic) and BAI group ( miR-7 overexpression combined with BAI treatment group). MTT assay, plate cloning assay and EdU assay were used to detect cell proliferation. The expression levels of autophagy related 16 like 1 (ATG16L1), sequestosome 1 (p62), Beclin 1, autophagy-related protein 5 (ATG5) and microtubule-assaiated protein 1 light chain3 (LC3) were detected by immunofluorescence staining and Western blot. Network pharmacology analysis to predict possible signaling pathways; Western blot was used to detect the expression levels of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Results 50 μmol/L BAI significantly inhibited the proliferation ability of BGC-823 cells; Compared with the control group, the expression level of miR-7 was significantly increased after BAI treatment. The cell proliferation of the miR-7 group was significantly inhibited, and the protein expression level of autophagy-related proteins and the LC3II/LC3I ratio were significantly up-regulated, which promoted the formation of autophagosomes and inhibited the formation of autophagic flow in BGC-823 cells. Compared with the miR-7 group, the BAI group could further inhibit the proliferation of BGC-823 cells, induce the formation of autophagosomes, but inhibit the production of autophagy flow. Network pharmacology analysis showed that the common target genes of BAI, gastric cancer and autophagy may be related to PI3K/AKT signaling pathway. Compared with the control group, the phosphorylation levels of p-PI3K, p-AKT and p-mTOR in the miR-7 group were significantly inhibited, and the phosphorylation levels of these proteins were further inhibited in the BAI group. Conclusion BAI-mediated miR-7 inhibits the formation of autophagosomes in BGC-823 cells by inhibiting PI3K/AKT/mTOR signaling pathway, and inhibits the generation of autophagic flow.
Humans
;
MicroRNAs/metabolism*
;
Stomach Neoplasms/drug therapy*
;
Autophagy/genetics*
;
Cell Line, Tumor
;
Flavanones/pharmacology*
;
Cell Proliferation/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Gene Expression Regulation, Neoplastic/drug effects*
10.A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin.
Xin-Yang LIU ; Wei XIE ; He-Yang ZHOU ; Hui-Qing ZHANG ; Yong-Sheng JIN
Journal of Integrative Medicine 2024;22(6):621-636
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Flavanones/chemistry*
;
Flavonoids/chemistry*
;
Antiviral Agents/chemistry*
;
Humans
;
Scutellaria baicalensis/chemistry*
;
Animals
;
Glucuronides/chemistry*

Result Analysis
Print
Save
E-mail