1.A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin.
Xin-Yang LIU ; Wei XIE ; He-Yang ZHOU ; Hui-Qing ZHANG ; Yong-Sheng JIN
Journal of Integrative Medicine 2024;22(6):621-636
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Flavanones/chemistry*
;
Flavonoids/chemistry*
;
Antiviral Agents/chemistry*
;
Humans
;
Scutellaria baicalensis/chemistry*
;
Animals
;
Glucuronides/chemistry*
2.Anti-fibrotic mechanism of Sedum sarmentosum total flavanones in inhibiting activation of HSC by regulating Smads.
Yuan-Can LIN ; Hai-Ying LUO ; Hui-Fang LIU ; Xing-Hai DU
China Journal of Chinese Materia Medica 2020;45(3):631-635
This paper was aimed to observe the interventional effect of Sedum sarmentosum total flavanones on hepatic fibrosis and its possible mechanism through the subcutaneous injection of CCl_4 in rats. Sixty male SD rats were randomly divided into normal control group, model group, low-dose, medium-dose, high-dose S. sarmentosum total flavanones groups(100, 200, 400 mg·kg~(-1)) and silymarin group(200 mg·kg~(-1)). The model of liver fibrosis was established by subcutaneous injection of rats with 40% CCl_4. After the modeling, the drug groups were intragastrically administered with corresponding drugs once a day for consecutively five weeks, while the normal group and the model group were given 0.9% sodium chloride solution during the same period. After the experiment, the general conditions of rats and the pathological changes of liver tissues were observed, and the contents of serum ALT, AST, HA and LN were measured. Besides, the expressions of the protein and relevant mRNA of Smad2/3, Smad4 and α-SMA in rats were detected. Compared with model group, S. sarmentosum total flavanones could significantly increase the rats' body weight, inhibit the increase of liver and spleen index in rats of liver fibrosis, reduce the levels of ALT, AST, HA and LN, and alleviate pathological changes. Meanwhile, compared with the model group, the protein expressions of Smad2/3, Smad4 and α-SMA as well as relevant mRNA expressions in S. sarmentosum total flavanones group were obviously decreased, while Smad7 expression was markedly increased. As a result, S. sarmentosum total flavanones could significantly alleviate CCl_4-induced liver fibrosis, and its anti-hepatic fibrosis mechanism may be related to intervention with Smads pathway, so as to inhibit the activation of HSC.
Animals
;
Carbon Tetrachloride
;
Drugs, Chinese Herbal/therapeutic use*
;
Flavanones/therapeutic use*
;
Hepatic Stellate Cells/drug effects*
;
Liver
;
Liver Cirrhosis/drug therapy*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Sedum/chemistry*
;
Signal Transduction
;
Smad Proteins/metabolism*
3.Research on attributes of biopharmaceutics classification system for Chinese materia medica of baicalein in Gegen Qinlian Decoction environment.
Yang LIU ; Li YANG ; Xin ZHANG ; Ya-Ru CHENG ; Yi-Ting GONG ; Ling DONG
China Journal of Chinese Materia Medica 2019;44(17):3653-3661
For the effects of multi-component environment on the solubility and permeability of single components,and the problems of biopharmaceutical attribute classification of single components in the compound prescriptions environment,baicalein was used as the research object in this study to investigate the biopharmaceutic attributes of single-component and their traditional Chinese medicine( TCM) biopharmaceutic attributes in the multi-component environment of Gegen Qilian Decoction. Shaking flask method,intrinsic dissolution rate test and HPLC were used to determine solubility of baicalein. Markers specified by FDA were utilized as permeable boundary reference materials to verify the applicability of the single-pass intestinal perfusion method( SPIP),and the quantitative research on the permeability of baicalein was also conducted. It is concluded that baicalein could be categorized as BCS-Ⅱ drug based on its low solubility and high intestinal permeability values,and it may be categorized into CMMBCS-I in the multi-component environment of Gegen Qilian Decoction due to its poor solubility but enhanced solubility and permeability in compound environment. This study could provide verification ideas for clinical determination of the best human oral dose of baicalein,and provide the data basis for the study of biopharmaceutics classification system of Chinese materia medica( CMMBCS).
Biopharmaceutics
;
classification
;
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
chemistry
;
Humans
;
Intestinal Absorption
;
Materia Medica
;
classification
;
Permeability
;
Solubility
4.Inhibitory effect of flavonoids from Scutellariae Radix on human cytochrome P450 1A.
Dong-Zhu TU ; Hong-Ying MA ; Ya-Qiao WANG ; Xiao-Hua ZHAO ; Wen-Zhi GUO ; Guang-Bo GE ; Ling YANG
China Journal of Chinese Materia Medica 2019;44(3):566-573
This study investigated the inhibitory effect of eight natural flavonoids in Chinese herb Scutellariae Radix on huamn cytochrome P450 1 A(CYP1 A), a key cancer chemo-preventive target. In this study, phenacetin was used as a probe substrate for CYP1 A, while human liver microsomes and recombinant human CYP1 A enzymes were used as enzyme sources. Liquid chromatography-tandem mass spectrometry was used to monitor the formation rates of acetaminophen, the O-deethylated metabolite of phenacetin. The dose-dependent inhibition curves were depicted based on the changes of the formation rates of acetaminophen, while the IC_(50) were determined. Inhibition kinetic analyses and docking simulations were used to investigate the inhibition modes and mechanism of wogonin(the most potent CYP1 A inhibitor in this herb), while the inhibition constants(K_i) of wogonin against both CYP1 A1 and CYP1 A2 were determined. Among all tested flavonoids, wogonin, 7-methoxyflavanone and oroxylin A displayed a strong inhibitory effect on CYP1 A(IC_(50)<1 μmol·L~(-1)), baicalein exhibited a moderate inhibitory effect on CYP1 A(IC_(50) between 1-10 μmol·L~(-1)), and baicalin, scutellarein and wogonoside displayed a very weak inhibitory effect on CYP1 A(IC_(50) between 10-25 μmol·L~(-1)), but scutellarin displayed a negligible inhibitory effect on CYP1 A(IC_(50)>100 μmol·L~(-1)). Further investigations demonstrated that wogonin had a weak inhibitory effect on other human CYP enzymes, suggesting that it could be used as a lead compound for the development of specific inhibitors of CYP1 A. Furthermore, the inhibition kinetic analyses clearly demonstrated that wogonin could strongly inhibit phenacetin O-deethylation in both CYP1 A1 and CYP1 A2 in a competitive manner, with K_i values at 0.118 and 0.262 μmol·L~(-1), respectively. Molecular docking demonstrated that wogonin could strongly interact with CYP1 A1 and CYP1 A2 via hydrophobic and π-π interactions, as well as Ser120 and Ser116 in CYP1 A1 via hydrogen-bonding. In conclusion, this study found that some flavonoids in Scutellariae Radix displayed a strong inhibitory effect on CYP1 A, while wogonin is the most potent CYP1 A inhibitor with a relatively high selectivity towards CYP1 A over other human CYPs.
Chromatography, Liquid
;
Cytochrome P-450 CYP1A1
;
antagonists & inhibitors
;
Cytochrome P-450 Enzyme Inhibitors
;
pharmacology
;
Flavanones
;
pharmacology
;
Flavonoids
;
pharmacology
;
Humans
;
Molecular Docking Simulation
;
Scutellaria baicalensis
;
chemistry
5.A Review on Pharmacological and Analytical Aspects of Naringenin.
Kanika PATEL ; Gireesh Kumar SINGH ; Dinesh Kumar PATEL
Chinese journal of integrative medicine 2018;24(7):551-560
Flavonoids are a widely distributed group of phytochemicals having benzo-pyrone nucleus, and more than 4,000 different flavonoids have been described and categorized into flavonols, flavones, flavanones, isoflavones, catechins and anthocyanidins. Flavonoids occurs naturally in fruits, vegetables, nuts, and beverages such as coffee, tea, and red wine, as well as in medical herbs. Flavonoids are responsible for the different colors of plant parts and are important constituents of the human diet. Flavanoids have different pharmacological activities, such as antioxidant, anti-allergic, antibacterial, anti-inflammatory, antimutagenic and anticancer activity. Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Pharmacologically, it has anticancer, antimutagenic, anti-inflammatory, antioxidant, antiproliferative and antiatherogenic activities. Naringenin is used for the treatments of osteoporosis, cancer and cardiovascular diseases, and showed lipid-lowering and insulin-like properties. In the present review, detailed pharmacological and analytical aspects of naringenin have been presented, which revealed the impressive pharmacological profile and the possible usefulness in the treatment of different types of diseases in the future. The information provided in this communication will act as an important source for development of effective medicines for the treatment of various disorders.
Anti-Inflammatory Agents
;
chemistry
;
pharmacology
;
Antineoplastic Agents
;
chemistry
;
pharmacology
;
Antioxidants
;
chemistry
;
pharmacology
;
Flavanones
;
chemistry
;
pharmacology
;
Humans
;
Isoflavones
;
chemistry
;
pharmacology
;
Neoplasms
;
drug therapy
6.Exogenous H₂O₂ regulated secondary metabolism of Scutellaria baicalensis and enhanced drug quality.
Xiao-Ying FU ; Hui-Min GUO ; Wei CONG ; Xiang-Cai MENG
China Journal of Chinese Materia Medica 2018;43(2):271-287
The increasing demand of Chinese materia medica could not be supplied by wild resource, and the cultivated medicinal materials become popular, which led to decreased quality of many medicinal materials due to the difference of the circumstance between the wild and the cultivated. How to improve quality becomes key points of Chinese medicine resource. The leaves of Scutellaria baicalensis were sprayed with H₂O₂, the activities of superoxide dismutase (SOD) and catalase (CAT) changed little, but there had been a marked decrease of peroxidase (POD) and ascorbic oxidase (APX), which showed that the antioxidase system declined. Meanwhile, H₂O₂, as enhanced the expression of phenylalnine ammonialyase (PAL) and β-glucuronidase (GUS) as well as activity of PAL, promoted the biosynthesis and biotransformation of flavonoids. At the day 2 after treated, H₂O₂ of 0.004 μmol·L⁻¹ the contents of the baicalin and the wogonoside decreased slightly, but the contents of the baicalein and the wogonin increased significantly, the baicalein from 0.094% to 0.324%, the wogonin from 0.060% to 0.110%, i. e. increased 246% and 83.3%, respectively.
Ascorbate Oxidase
;
metabolism
;
Catalase
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
analysis
;
Flavonoids
;
analysis
;
Glucosides
;
analysis
;
Glucuronidase
;
metabolism
;
Hydrogen Peroxide
;
Peroxidase
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Scutellaria baicalensis
;
metabolism
;
Secondary Metabolism
;
Superoxide Dismutase
;
metabolism
7.Distribution patterns of the contents of five biologically activate ingredients in the root of Scutellaria baicalensis.
Rong-Xiu LIU ; Guo-Hu SONG ; Pei-Gen WU ; Xue-Wen ZHANG ; Hui-Juan HU ; Jia LIU ; Xiao-Su MIAO ; Zhi-Yan HOU ; Wen-Quan WANG ; Sheng-Li WEI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(2):152-160
As an important herbaceous plant, Scutellaria baicalensis Georgi (Chinese skullcap) is geographically widespread and commonly used throughout the world. In the Chinese medicine market, S. baicalensis has been divided into two primary types, "Ku Qin" (WXR) and "Tiao Qin" (TST). Moreover, TST is also divided into different grades according to the diameter of roots. To explore the distribution patterns of the contents of five biologically activate ingredients (FBAI), we used six-year-old cultivated S. baicalensis and analyzed its growth characteristics as well as the quality difference among different types and diameters in roots. Throughout the entire root, we discovered that contents of the FBAI all initially increased and subsequently decreased from the top to the bottom of the roots. The baicalin content of WXR was less than that of TST. On the contrary, the contents of baicalein, wogonin, and oroxylin A in WXR were up to about two times higher than that in TST. We also found that the 0 to 40 cm part of the S. baicalensis root possessed about 87% of the root biomass and about 92% of the contents of the active ingredients.
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
analysis
;
Flavonoids
;
analysis
;
Plant Roots
;
chemistry
;
Scutellaria baicalensis
;
chemistry
8.Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways.
Do Luong HUYNH ; Neelesh SHARMA ; Amit KUMAR SINGH ; Simrinder SINGH SODHI ; Jiao-Jiao ZHANG ; Raj Kumar MONGRE ; Mrinmoy GHOSH ; Nameun KIM ; Yang HO PARK ; Dong KEE JEONG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(1):15-40
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
DNA Adducts
;
metabolism
;
Drug Resistance, Neoplasm
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Flavanones
;
pharmacology
;
therapeutic use
;
Humans
;
Neoplasms
;
drug therapy
;
metabolism
;
Phytotherapy
;
Scutellaria baicalensis
;
chemistry
;
Signal Transduction
;
drug effects
9.A new caffeate compound from Nardostachys chinensis.
Ying-peng CHEN ; Zhong-ping WANG ; Hong-hong ZHENG ; Yan-tong XU ; Yani ZHU ; Peng ZHANG ; Hong-hua WU
Acta Pharmaceutica Sinica 2016;51(1):100-104
A new caffeate compound, (E)-erythro-syringylglyceryl caffeate (1), was isolated from the roots and rhizomes of Nardostachys chinensis Batal., together with nine known phenolic compounds, including (+)-licarin A (2), naringenin 4', 7-dimethyl ether (3), pinoresinol-4-O-β-D-glucoside (4), caraphenol A (5), Z-miyabenol C (6), protocatechuic acid (7), caffeic acid (8), gallic acid (9) and vanillic acid (10). Their chemical structures were elucidated on the basis of spectroscopic data and physicochemical properties. Furthermore, this is the first report of compounds 2, 5 and 6 from Nardostachys genus.
Caffeic Acids
;
chemistry
;
isolation & purification
;
Flavanones
;
chemistry
;
isolation & purification
;
Furans
;
chemistry
;
isolation & purification
;
Glucosides
;
chemistry
;
isolation & purification
;
Hydroxybenzoates
;
chemistry
;
isolation & purification
;
Lignans
;
chemistry
;
isolation & purification
;
Nardostachys
;
chemistry
;
Plant Roots
;
chemistry
;
Rhizome
;
chemistry
;
Vanillic Acid
;
chemistry
;
isolation & purification
10.Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin.
Miao-Xin PENG ; Xiao-Yue WANG ; Fan WANG ; Lei WANG ; Pei-Pei XU ; Bing CHEN
Chinese Medical Journal 2016;129(24):2958-2966
BACKGROUNDTraditional Chinese medicine wogonin plays an important role in the treatment of leukemia. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. Drugs coated with MNPs are becoming a promising way for better leukemia treatment. This study aimed to assess the possible molecular mechanisms of wogonin-coated MNP-Fe3O4 (Wog-MNPs-Fe3O4) as an antileukemia agent.
METHODSAfter incubated for 48 h, the antiproliferative effects of MNPs, wogonin, or Wog-MNPs-Fe3O4on K562/A02 cells were determined by methyl thiazolyl tetrazolium (MTT) assay. The apoptotic rates of K562/A02 cells treated with either wogonin or Wog-MNPs-Fe3O4were determined by flow cytometer (FCM) assay. The cell cycle arrest in K562/A02 cells was determined by FCM assay. The elementary molecular mechanisms of these phenomena were explored by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR).
RESULTSWith cell viabilities ranging from 98.76% to 101.43%, MNP-Fe3O4was nontoxic to the cell line. Meanwhile, the wogonin and Wog-MNPs-Fe3O4had little effects on normal human embryonic lung fibroblast cells. The cell viabilities of the Wog-MNPs-Fe3O4group (28.64-68.36%) were significantly lower than those of the wogonin group (35.53-97.28%) in a dose-dependent manner in 48 h (P < 0.001). The apoptotic rate of K562/A02 cells was significantly improved in 50 μmol/L Wog-MNPs-Fe3O4group (34.28%) compared with that in 50 μmol/L wogonin group (23.46%; P< 0.001). Compared with those of the 25 and 50 μmol/L wogonin groups, the ratios of G0/G1-phase K562/A02 cells were significantly higher in the 25 and 50 μmol/L Wog-MNPs-Fe3O4groups (all P< 0.001). The mRNA and protein expression levels of the p21 and p27 in the K562/A02 cells were also significantly higher in the Wog-MNPs-Fe3O4group compared with those of the wogonin group (all P< 0.001).
CONCLUSIONSThis study demonstrated that MNPs were the effective drug delivery vehicles to deliver wogonin to the leukemia cells. Through increasing cells arrested at G0/G1-phase and inducing apoptosis of K562/A02 cells, MNPs could enhance the therapeutic effects of wogonin on leukemia cells. These findings indicated that MNPs loaded with wogonin could provide a promising way for better leukemia treatment.
Apoptosis ; drug effects ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drug Delivery Systems ; methods ; Drug Resistance, Multiple ; Drugs, Chinese Herbal ; chemistry ; pharmacology ; Flavanones ; chemistry ; pharmacology ; Humans ; K562 Cells ; Magnetics ; Nanoparticles ; chemistry

Result Analysis
Print
Save
E-mail