2.Lianmei Qiwu Decoction relieves diabetic cardiac autonomic neuropathy by regulating AMPK/TrkA/TRPM7 signaling pathway.
Xue-Mei SUN ; Hai-Gang JI ; Xin GAO ; Xin-Dong WANG
China Journal of Chinese Materia Medica 2023;48(7):1739-1750
This study investigated the effect of Lianmei Qiwu Decoction(LMQWD) on the improvement of cardiac autonomic nerve remodeling in the diabetic rat model induced by the high-fat diet and explored the underlying mechanism of LMQWD through the AMP-activated protein kinase(AMPK)/tropomyosin receptor kinase A(TrkA)/transient receptor potential melastatin 7(TRPM7) signaling pathway. The diabetic rats were randomly divided into a model group, an LMQWD group, an AMPK agonist group, an unloaded TRPM7 adenovirus group(TRPM7-N), an overexpressed TRPM7 adenovirus group(TRPM7), an LMQWD + unloaded TRPM7 adenovirus group(LMQWD+TRPM7-N), an LMQWD + overexpressed TRPM7 adenovirus group(LMQWD+TRPM7), and a TRPM7 channel inhibitor group(TRPM7 inhibitor). After four weeks of treatment, programmed electrical stimulation(PES) was employed to detect the arrhythmia susceptibility of rats. The myocardial cell structure and myocardial tissue fibrosis of myocardial and ganglion samples in diabetic rats were observed by hematoxylin-eosin(HE) staining and Masson staining. The immunohistochemistry, immunofluorescence, real-time quantitative polymerase chain reaction(RT-PCR), and Western blot were adopted to detect the distribution and expression of TRPM7, tyrosine hydroxylase(TH), choline acetyltransferase(ChAT), growth associated protein-43(GAP-43), nerve growth factor(NGF), p-AMPK/AMPK, and other genes and related neural markers. The results showed that LMQWD could significantly reduce the arrhythmia susceptibility and the degree of fibrosis in myocardial tissues, decrease the levels of TH, ChAT, and GAP-43 in the myocardium and ganglion, increase NGF, inhibit the expression of TRPM7, and up-regulate p-AMPK/AMPK and p-TrkA/TrkA levels. This study indicated that LMQWD could attenuate cardiac autonomic nerve remodeling in the diabetic state, and its mechanism was associated with the activation of AMPK, further phosphorylation of TrkA, and inhibition of TRPM7 expression.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Nerve Growth Factor/metabolism*
;
Diabetes Mellitus, Experimental/drug therapy*
;
TRPM Cation Channels/metabolism*
;
GAP-43 Protein/metabolism*
;
Signal Transduction
;
Diabetic Neuropathies/genetics*
;
Fibrosis
3.Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies.
Ya-Fang TAN ; Yu-Han FU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2023;29(7):600-607
OBJECTIVE:
To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).
METHODS:
Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.
RESULTS:
The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.
CONCLUSIONS
STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.
Rats
;
Animals
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
RNA-Seq
;
Transcriptome/genetics*
;
Heart Failure/drug therapy*
;
Collagen
;
Collagen Type I/metabolism*
;
Fibrosis
;
Myocardium/pathology*
4.Clinicopathologic characteristics of liver inflammation and fibrosis in 310 patients with chronic hepatitis B.
Chuan JIANG ; Jinqing LIU ; Ronghua LI ; Keyu CHEN ; Wenting PENG ; Lei FU ; Shifang PENG
Journal of Central South University(Medical Sciences) 2023;48(5):698-706
OBJECTIVES:
Long-term hepatitis B virus (HBV) infection can cause recurrent inflammation in the liver, and then develop into liver fibrosis, cirrhosis, and liver cancer. The hepatic pathological change is one of the important criteria for guiding antiviral therapy in patients with chronic hepatitis B (CHB). Due to the limitations of liver biopsy, it is necessary to find valuable non-invasive indicators to evaluate the hepatic pathological changes in CHB patients and guide the antiviral therapy. This study aims to analyze the clinical characteristics of different pathological changes in CHB patients, and to explore the factors influnencing the degree of liver inflammation and fibrosis in CHB patients with normal alanine aminotransferase (ALT).
METHODS:
This retrospective study was conducted on 310 CHB patients. Liver biopsy was performed in all these patients. The clinical data of the patients were collected. The liver biopsy pathological results were used as the gold standard to analyze the relationship between clinical indicators and liver pathological changes. Then CHB patients with normal ALT were screened, and the independent factors influencing the degree of liver inflammation and fibrosis were explored.
RESULTS:
Among the 310 patients with CHB, there were 249 (80.3%) patients with significant liver inflammation [liver inflammation grade (G) ≥2] and 119 (38.4%) patients with significant liver fibrosis [liver fibrosis stage (S) ≥2]. The results of univariate analysis of total samples showed that the ALT, γ-glutamyl transferase, alkaline phosphatase, and HBV DNA were related to the significant liver pathological changes. Among the 132 CHB patients with normal ALT, the patients with liver pathology G/S≥2, G≥2, and S≥2 were 80.3% (106/132), 68.2% (90/132), and 43.2% (57/132), respectively. The results showed that the independent influencing factor of significant liver inflammation was HBV DNA>2 000 U/mL (OR=3.592, 95% CI 1.534 to 8.409), and the independent influencing factors of significant liver fibrosis were elevated alkaline phosphatase level (OR=1.022, 95% CI 1.002 to 1.043), decreased platelet count (OR=0.990, 95% CI 0.982 to 0.998), and positive in hepatitis B e antigen (HBeAg) (OR=14.845, 95% CI 4.898 to 44.995). According to the multivariate analysis, a diagnostic model for significant liver fibrosis in CHB patients with normal ALT was established, and the area under the receiver operating characteristic curve was 0.844 (95% CI 0.779 to 0.910).
CONCLUSIONS
The liver pathological changes should be evaluated in combination with different clinical indicators. A considerable number of CHB patients with normal ALT still have significant liver pathological changes, which need to be identified and treated with antiviral therapy in time. Among them, HBV DNA>2 000 U/mL suggests the significant liver inflammation, and the diagnostic model for significant liver fibrosis based on alkaline phosphatase, platelet count, and HBeAg can help to evaluate the degree of liver fibrosis.
Humans
;
Hepatitis B, Chronic/complications*
;
Hepatitis B e Antigens/therapeutic use*
;
Alkaline Phosphatase
;
DNA, Viral
;
Retrospective Studies
;
Fibrosis
;
Hepatitis B virus/genetics*
;
Liver Cirrhosis/etiology*
;
Inflammation/drug therapy*
;
Antiviral Agents/therapeutic use*
;
Alanine Transaminase
5.Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis.
Mai A ABD-ELMAWLA ; Heba R GHAIAD ; Enas S GAD ; Kawkab A AHMED ; Maha ABDELMONEM
Journal of Zhejiang University. Science. B 2023;24(8):723-733
Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-β1 (TGF-β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin-1β (IL-1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-κB (NF-κB) and hypoxia‑inducible factor‑1α (HIF-1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-κB.
Animals
;
Rats
;
Anti-Inflammatory Agents
;
Bleomycin/toxicity*
;
Fibronectins/metabolism*
;
Fibrosis
;
Inflammasomes/metabolism*
;
Ivermectin/adverse effects*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pulmonary Fibrosis/drug therapy*
6.Therapeutic mechanism of Shenbing Decoction Ⅲ for renal fibrosis in chronic kidney disease: a study with network pharmacology, molecular docking and validation in rats.
Guanfeng LUO ; Huaxi LIU ; Bei XIE ; Yijian DENG ; Penghui XIE ; Xiaoshan ZHAO ; Xiaomin SUN
Journal of Southern Medical University 2023;43(6):924-934
OBJECTIVE:
To observe the effect of Shenbing Decoction Ⅲ for improving renal function and pathology in rats with 5/6 nephrectomy and analyze its therapeutic mechanism for renal fibrosis in chronic kidney disease using network pharmacology combined with molecular docking.
METHODS:
Forty male SD rats were randomized into two groups to receive two-staged 5/6 nephrectomy (n=30) or sham operation (n=10), and 2 weeks after the final operation, serum creatinine level of the rats was measured. The rats with nephrectomy were further randomized into Shenbing Decoction Ⅲ group, losartan group and model group for daily treatment with the corresponding drugs via gavage starting at 1 week after 5/6 nephrectomy. After 16 weeks of treatment, serum creatinine and urea nitrogen levels of the rats were measured, and HE staining and Western blotting were used to examine the changes in renal pathology and fibrosis-related factors. Network pharmacology combined with molecular docking study was performed to explore the therapeutic mechanism Shenbing Decoction Ⅲ against renal fibrosis in chronic kidney disease, and Western blotting was used to verify the expressions of the core targets.
RESULTS:
Compared with those in the model group, the rats receiving 5/6 nephrectomy and Shenbing Decoction Ⅲ treatment showed significantly reduced serum creatinine and urea nitrogen levels, lessened renal pathologies, and improvement of the changes in epithelial mesenchymal transition-related proteins. Network pharmacological analysis showed that the main active ingredients of Shenbing Decoction Ⅲ were acacetin, apigenin, eupatilin, quercetin, kaempferol and luteolin, and the key targets included STAT3, SRC, CTNNB1, PIK3R1 and AKT1. Molecular docking study revealed that the active ingredients of Shenbing Decoction Ⅲ had good binding activity to the key targets. Western blotting showed that in rats with 5/6 nephrectomy, treatment with Shenbing Decoction Ⅲ obviously restored the protein expression of STAT3, PI3K, and AKT in renal tissue.
CONCLUSION
Shenbing Decoction Ⅲ can reduce renal injury induced by 5/6 nephrectomy in rats, and its therapeutic effects are mediated possibly by its main pharmacologically active ingredients that alleviate renal fibrosis via modulating multiple targets including STAT3, PIK3R1, and AKT1.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation
;
Network Pharmacology
;
Creatinine
;
Renal Insufficiency, Chronic/drug therapy*
;
Fibrosis
;
Urea
7.Diagnostic value of novel hepatic fibrosis markers in assessing cirrhosis in patients with chronic hepatitis C.
Qian KANG ; Jian Xiang LIU ; Ning TAN ; Hong Yu CHEN ; Jia Li PAN ; Yi Fan HAN ; Xiao Yuan XU
Chinese Journal of Hepatology 2023;31(1):56-64
Objective: To investigate the efficacy of chitinase-3-like protein 1 (CHI3L1) and Golgi protein 73 (GP73) in the diagnosis of cirrhosis and the dynamic changes of CHI3L1 and GP73 after HCV clearance in patients with chronic hepatitis C (CHC) treated with direct-acting antiviral drugs (DAAs). The comparison of continuous variables of normal distribution were statistically analyzed by ANOVA and t-test. The comparison of continuous variables of non-normal distribution were statistically analyzed by rank sum test. The categorical variables were statistically analyzed by Fisher's exact test and χ(2) test. Correlation analysis was performed using Spearman correlation analysis. Methods: Data of 105 patients with CHC diagnosed from January 2017 to December 2019 were collected. The receiver operating characteristic curve (ROC curve) was plotted to study the efficacy of serum CHI3L1 and GP73 for the diagnosis of cirrhosis. Friedman test was used to compare CHI3L1 and GP73 change characteristics. Results: The areas under the ROC curve for CHI3L1 and GP73 in the diagnosis of cirrhosis at baseline were 0.939 and 0.839, respectively. Serum levels of CHI3L1 and GP73 in the DAAs group decreased significantly at the end of treatment compared with baseline [123.79 (60.25, 178.80) ng/ml vs. 118.20 (47.68, 151.36) ng/ml, P = 0.001; 105.73 (85.05, 130.69) ng/ml vs. 95.52 (69.52, 118.97) ng/ml, P = 0.001]. Serum CHI3L1 and GP73 in the pegylated interferon combined with ribavirin (PR) group were significantly lower at the end of 24 weeks of treatment than the baseline [89.15 (39.15, 149.74) ng/ml vs. 69.98 (20.52, 71.96) ng/ml, P < 0.05; 85.07 (60.07, 121) ng/ml vs. 54.17 (29.17, 78.65) ng/ml, P < 0.05]. Conclusion: CHI3L1 and GP73 are sensitive serological markers that can be used to monitor the fibrosis prognosis in CHC patients during treatment and after obtaining a sustained virological response. Serum CHI3L1 and GP73 levels in the DAAs group decreased earlier than those in the PR group, and the serum CHI3L1 levels in the untreated group increased compared with the baseline at about two years of follow-up.
Humans
;
Hepatitis C, Chronic/drug therapy*
;
Antiviral Agents/therapeutic use*
;
Membrane Proteins/metabolism*
;
Liver Cirrhosis/diagnosis*
;
Fibrosis
;
Biomarkers
8.Qianjin Wenwu decoction suppresses renal interstitial fibrosis by enhancing the degradation of extracellular matrix in mice with unilateral ureteral obstruction.
Chengshan JIN ; Xiaotian WU ; Yue YOU ; Yuing WANG ; Jing WU ; Along ZUO ; Yan ZHENG ; Jianpeng GUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):253-262
Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM). Qianjin Wenwu decoction (QWD), a well-known traditional Korean medicine, has been used for the treatment of DKD, with satisfactory therapeutic effects. This study was designed to investigate the active components and mechanisms of action of QWD in the treatment of DKD. The results demonstrated that a total of 13 active components in five types were found in QWD, including flavonoids, flavonoid glycosides, phenylpropionic acids, saponins, coumarins, and lignins. Two key proteins, TGF-β1 and TIMP-1, were identified as the target proteins through molecular docking. Furthermore, QWD significantly suppressed Scr and BUN levels which increased after unilateral ureteral obstruction (UUO). Hematoxylin & eosin (H&E) and Masson staining results demonstrated that QWD significantly alleviated renal interstitial fibrosis in UUO mice. We also found that QWD promoted ECM degradation by regulating MMP-9/TIMP-1 homeostasis to improve renal tubulointerstitial fibrosis and interfere with the expression and activity of TGF- β1 in DKD treatment. These findings explain the underlying mechanism of QWD for the treatment of DKD, and also provide methodological reference for investigating the mechanism of traditional medicine in the treatment of DKD.
Rats
;
Mice
;
Animals
;
Ureteral Obstruction/metabolism*
;
Kidney/metabolism*
;
Tissue Inhibitor of Metalloproteinase-1/metabolism*
;
Molecular Docking Simulation
;
Rats, Sprague-Dawley
;
Kidney Diseases/drug therapy*
;
Extracellular Matrix/metabolism*
;
Flavonoids/metabolism*
;
Fibrosis
9.Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Yiyou LIN ; Jiale WEI ; Yehui ZHANG ; Junhao HUANG ; Sichen WANG ; Qihan LUO ; Hongxia YU ; Liting JI ; Xiaojie ZHOU ; Changyu LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):359-370
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
;
Mice
;
Male
;
Cell Line
;
Rats
;
Kidney/physiology*
;
Fibrosis/drug therapy*
;
Renal Insufficiency, Chronic/drug therapy*
;
Adenine
;
Epithelial-Mesenchymal Transition
;
Aquaporin 1/metabolism*
10.Research progress of anti-fibrotic drugs that inhibit epithelial-mesenchymal transition in pulmonary fibrosis.
Li Bing ZHANG ; Na ZHAO ; Qi Ying NONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):72-77
Pulmonary fibrosis is the end-stage pathological change of lung diseases, which seriously affects the respiratory function of human body. A large number of studies at home and abroad have confirmed that epithelial-mesenchymal transition (EMT) is an important intermediate stage in the development of pulmonary fibrosis. Inhibition of multiple pathways upstream and downstream of EMT, such as the classical Smads pathway and non-Smads pathway of TGF-1 can effectively inhibit the process of EMT and alleviate pulmonary fibrosis. This article will review the main conclusions of the mechanism of action of EMT as a target to improve the pathology of pulmonary fibrosis so far, and provide a theoretical basis and research direction for further research and development of anti-pulmonary fibrosis drugs.
Humans
;
Epithelial-Mesenchymal Transition/drug effects*
;
Fibrosis/drug therapy*
;
Pulmonary Fibrosis/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta1/metabolism*
;
Antifibrotic Agents/therapeutic use*

Result Analysis
Print
Save
E-mail