1.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
2.Study on the gene expression and regulation mechanisms of fibroblasts in acute inflammatory response.
Meng DU ; Hanjing LIAO ; Manjing HUANG ; Yaqin WANG ; Zongjie ZHAO ; Zhixiang ZHU ; Jun LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):391-397
Objective To investigate the gene expression and regulatory mechanisms of mouse embryonic fibroblasts (MEFs) under inflammatory conditions, aiming to elucidate the role of MEFs in inflammatory responses and provide a foundation for discovering anti-inflammatory drugs that act by modulating MEF function. Methods MEFs cultured in vitro were divided into the following groups: lipopolysaccharides (LPS)-treated group, inflammatory conditioned medium (CM)-treated group, and control group, which were treated with LPS, CM, and equal volume solvent, respectively. Transcriptome sequencing was used to analyze the effects of two stimuli on gene expression profile of MEFs. Real time fluorescence quantitative PCR (RT-qPCR) was employed to verify the transcription levels of highly expressed genes of MEFs induced by CM. ELISA was performed to determine the concentrations of cytokines in cell supernatants. Finally, the regulatory effects of CM on the activation of signaling pathways in MEFs were analyzed by immunoblotting. Results Transcriptome analysis showed that both LPS and CM induced the transcription of a large number of genes in MEFs. Compared with LPS, CM potentiated the mRNA transcription of some acute phase proteins, inflammatory cytokines, chemokines, matrix metalloproteinases (MMP), prostaglandin synthetases, and colony-stimulating factors. The transcriptome analysis was verified by RT-qPCR. The results of ELISA showed that CM treatment significantly increased the secretion of interleukin 6 (IL-6), C-C motif chemokine ligand (CCL2), and C-X-C motif chemokine ligand (CXCL1) by MEFs compared with LPS. Mechanism study showed that both LPS and CM induced the phosphorylation of nuclear factor-κB p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), extracellular regulated protein kinases 1/2 (ERK1/2), and TANK-binding kinase (TBK) in MEFs, and CM strongly stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MEFs. Conclusion Both LPS and CM can induce transcription and protein secretion of various inflammation-related genes in MEFs. CM can partly enhance LPS-induced activation of MEFs, and the mechanism may be related to the enhancement effect of CM on the activation STAT3 signaling pathway.
Animals
;
Fibroblasts/immunology*
;
Mice
;
Lipopolysaccharides/pharmacology*
;
Inflammation/metabolism*
;
Signal Transduction/drug effects*
;
Gene Expression Regulation/drug effects*
;
Cytokines/genetics*
;
Culture Media, Conditioned/pharmacology*
;
Cells, Cultured
3.Prediction of Spatial Distance of CAFs-TAECs for Pathological Response to Neoadjuvant Chemoimmunotherapy in Lung Squamous Cell Carcinoma.
Duming YE ; Liying YANG ; Yimin ZHAO ; Yinhui WEN ; Miaoqing ZHAO ; Ligang XING ; Xiaorong SUN
Chinese Journal of Lung Cancer 2025;28(8):576-584
BACKGROUND:
Neoadjuvant therapeutic strategies play a pivotal role in the comprehensive treatment of non-small cell lung cancer (NSCLC). However, lung squamous cell carcinoma (SCC) generally exhibits a more favorable response to neoadjuvant therapy compared with lung adenocarcinoma (ADC). The aim of this study is to elucidate how baseline cancer-associated fibroblasts (CAFs) and tumor-associated endothelial cells (TAECs) influence the differential therapeutic outcomes of neoadjuvant treatment in SCC versus ADC.
METHODS:
We retrospectively collected pretreatment biopsy samples from 104 patients with stage II-III NSCLC who underwent neoadjuvant chemotherapy (NAC) or neoadjuvant chemoimmunotherapy (NAIC) at Shandong Cancer Hospital between January 1, 2018 and December 31, 2023. Tissue microarrays were constructed using an automated arrayer, and multiplex immunofluorescence staining (α-SMA/CD31/CK/DAPI) was performed to identify CAFs (α-SMA+/CK-) and TAECs (CD31+/CK-). Quantitative analyses included CAFs and TAECs densities, the nearest neighbor distance (NND) between CAFs and TAECs, and their spatial proximity (30 μm). Differences in major pathological response (MPR) between groups, defined as residual viable tumor cells ≤10% in resected specimens after neoadjuvant therapy, were assessed using the χ² test. The Mann-Whitney U test was applied to analyze intergroup differences in quantitative indicators, and receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predictive performance of immune-related markers for MPR in the NAIC cohort.
RESULTS:
Among the 104 NSCLC patients who received neoadjuvant therapy, 35 underwent NAIC and 69 received NAC. Overall, patients with SCC were more likely to achieve MPR compared with those with ADC (50.0% vs 22.4%, P=0.006). This trend persisted in the NAIC subgroup (72.7% vs 30.8%, P=0.038), whereas no significant difference in MPR rates was observed between SCC and ADC in the NAC subgroup. At baseline, prior to NAIC or NAC, programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression, CAFs and TAECs densities, CAFs-TAECs NND, and CAFs-TAECs proximity (30 μm) showed no significant differences between SCC and ADC. In patients with SCC receiving NAIC, baseline PD-L1/PD-1 expression, CAFs density, and TAECs density showed not significant differences between MPR and NMPR groups. However, the CAFs-TAECs distance was significantly greater in the MPR group (NND: 31.2 vs 24.7 μm, P=0.038), and the number of TAECs within 30 μm of CAFs was significantly lower (proximity: 1.1 vs 3.6, P=0.038). Univariate Cox regression analysis indicated that low TAECs density was associated with MPR following NAIC (OR=36.00, 95%CI: 2.68-1486.88, P=0.019). Furthermore, ROC analysis demonstrated that baseline CAFs-TAECs NND and proximity (30 μm) exhibited strong predictive performance for MPR in SCC patients treated with NAIC, with an area under the curve (AUC) of 0.893, sensitivity of 0.857, and specificity of 1.000.
CONCLUSIONS
CAFs are more spatially distant from TAECs and more prone to MPR after NAIC in SCC, which may be related to the reduced interaction of CAFs with TAECs and reduced tumor-associated angiogenesis.
Humans
;
Lung Neoplasms/therapy*
;
Neoadjuvant Therapy
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Endothelial Cells/drug effects*
;
Aged
;
Cancer-Associated Fibroblasts/drug effects*
;
Immunotherapy
;
Carcinoma, Squamous Cell/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Adult
4.Systemic comparison of molecular characteristics in different skin fibroblast senescent models.
Xiaokai FANG ; Shan ZHANG ; Mingyang WU ; Yang LUO ; Xingyu CHEN ; Yuan ZHOU ; Yu ZHANG ; Xiaochun LIU ; Xu YAO
Chinese Medical Journal 2025;138(17):2180-2191
BACKGROUND:
Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models.
METHODS:
Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models.
RESULTS:
In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids.
CONCLUSIONS
Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Humans
;
Fibroblasts/drug effects*
;
Cellular Senescence/physiology*
;
Skin/metabolism*
;
Child
;
Transcriptome/genetics*
;
Aged
;
Ultraviolet Rays
;
Cells, Cultured
;
Galactose/pharmacology*
5.Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway.
Junping ZHAN ; Shuo HUANG ; Qingliang MENG ; Wei FAN ; Huimin GU ; Jiakang CUI ; Huilian WANG
Journal of Southern Medical University 2025;45(1):35-42
OBJECTIVES:
To investigate the role of the BNIP3-PI3K/Akt signaling pathway in mediating the inhibitory effect of Buyang Huanwu Decoction (BYHWT) on mitochondrial autophagy in human synovial fibroblasts from rheumatoid arthritis patients (FLS-RA) cultured under a hypoxic condition.
METHODS:
Forty normal Wistar rats were randomized into two groups (n=20) for daily gavage of BYHWT or distilled water for 7 days to prepare BYHWT-medicated or control sera. FLS-RA were cultured in routine condition or exposed to hypoxia (10% O2) for 24 h wigh subsequent treatment with IL-1β, followed by treatment with diluted BYHWT-medicated serum (5%, 10% and 20%) or control serum. AnnexinV-APC/7-AAD double staining and T-AOC kit were used for detecting apoptosis and total antioxidant capacity of the cells, and the changes in ROS, ATP level, mitochondrial membrane potential and Ca2+ homeostasis were analyzed. The changes in mRNA and protein expressions of BNIP3, PI3K and AKT and mRNA expressions of LC3, Beclin-1 and P62 were detected using RT-qPCR and Western blotting.
RESULTS:
Treatment with BYHWT-medicated serum dose-dependently lowered apoptosis rate of IL-1β-induced FLS-RA with hypoxic exposure. The treatment significantly decreased T-AOC concentration, increased ROS production, autophagosome formation and ATPase levels, and lowered mitochondrial membrane potential and Ca2+ level in the cells. In IL-1β-induced FLS-RA with hypoxic exposure, treatment with BYHWT-medicated serum significantly increased BNIP3 protein expression, decreased the protein expressions of PI3K and AKT, increased the mRNA expressions of BNIP3 and P62, and lowered the mRNA expressions of PI3K, AKT, LC3 and Beclin-1 without significantly affecting Beclin-1 protein expression. The cells treated with 5% and 10% BYHWT-medicated serum showed no significant changes in LC3 expression.
CONCLUSIONS
BYHWT inhibits mitochondrial autophagy in IL-1β-induced FLS-RA with hypoxic exposure possibly by inhibiting BNIP3-mediated PI3K/AKT signaling pathway.
Drugs, Chinese Herbal/pharmacology*
;
Arthritis, Rheumatoid/pathology*
;
Animals
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Autophagy/drug effects*
;
Humans
;
Fibroblasts/cytology*
;
Rats, Wistar
;
Membrane Proteins/metabolism*
;
Rats
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Mitochondria/metabolism*
;
Cells, Cultured
;
Proto-Oncogene Proteins/metabolism*
;
Apoptosis/drug effects*
;
Cell Hypoxia
;
Synovial Membrane/cytology*
;
Male
;
Mitochondrial Proteins
6.C6TSEDRVAJZ, a combination of small-molecule compounds, induces differentiation of human placental fibroblasts into epithelioid cells in vitro.
Zhenjia DAI ; Qunwei GAO ; Mengjiao YING ; Ao WANG ; Juan HONG ; Chunjing WANG ; Yu GUO ; Changqing LIU ; Gaofeng LIU
Journal of Southern Medical University 2025;45(2):322-330
OBJECTIVES:
To reprogram human placental fibroblasts (HPFs) into chemically induced epithelioid-like cells (ciEP-Ls) using a combination of small-molecule compounds.
METHODS:
HPFs cultured under normoxic conditions were identified using immunofluorescence assay, PCR and chromosomal karyotyping. Under hypoxic conditions (37 ℃, 5% O2), HPFs were cultured in a medium containing small-molecule compounds C6TSEDRVAJZ (CHIR99021, 616452, TTNPB, SAG, EPZ5676, DZNep, Ruxolitinib, VTP50469, Afuresertib, JNK-IN-8, and EZM0414), and the cell morphology was observed daily. The expression levels of epithelial cell markers in the induced cells were detected by immunofluorescence, Western blotting and PCR. Chromosomal karyotyping of the induced cells was performed and the induction efficiency was calculated.
RESULTS:
Before induction, HPFs showed positive expressions of fibroblast surface markers CD34 and vimentin and were negative for epithelial surface markers. PCR results showed high expressions of fibroblast-specific genes S100A4 and COL1A1 in HPFs with a normal human diploid karyotype. After one day of induction, the HPFs underwent morphological changes from a multinodular spindle shape to a round or polygonal shape, which was morphologically characteristic of ciEP-Ls. On day 4 of induction, the cells exhibited high expressions of the epithelial cell markers E-cadherin and Lin28A. RT-qPCR results also showed that the cells expressed the epithelial markers Smad3, GLi3, PAX8, WT1, KRT19, and KRT18 with significantly down-regulated expressions of all the fibroblast surface markers and a normal human diploid karyotype. The reprogramming efficiency of HPFs into ciEP-Ls ranged from (64.53±2.8)% to (68.10±3.6)%.
CONCLUSIONS
The small-molecule compound combination C6TSEDRVAJZ is capable of inducing HPFs into ciEP-Ls under hypoxic conditions with a high induction efficiency.
Humans
;
Fibroblasts/drug effects*
;
Pregnancy
;
Female
;
Cell Differentiation/drug effects*
;
Pyrimidines/pharmacology*
;
Placenta/cytology*
;
Cells, Cultured
;
Pyridines/pharmacology*
;
Pyrazoles/pharmacology*
;
Epithelial Cells/cytology*
7.Haematococcus pluvialis alleviates bleomycin-induced pulmonary fibrosis in mice by inhibiting transformation of lung fibroblasts into myofibroblast.
Xiao ZHANG ; Jingzhou MAN ; Yong ZHANG ; YunJian ZHENG ; Heping WANG ; Yijun YUAN ; Xi XIE
Journal of Southern Medical University 2025;45(8):1672-1681
OBJECTIVES:
To investigate the effect of Haematococcus pluvialis (HP) on bleomycin (BLM)-induced pulmonary fibrosis in mice and on TGF-β1-induced human fetal lung fibroblasts (HFL1).
METHODS:
Thirty male C57BL/6 mice were randomly divided into control group, BLM-induced pulmonary fibrosis model group, low- and high-dose HP treatment groups (3 and 21 mg/kg, respectively), and 300 mg/kg pirfenidone (positive control) group. The effects of drug treatment for 21 days were assessed by examining respiratory function, lung histopathology, and expression of fibrosis markers in the lung tissues of the mouse models. In TGF-β1-induced HFL1 cell cultures, the effects of treatment with 120, 180 and 240 μg/mL HP or 1.85 μg/mL pirfenidone for 48 h on expression levels of fibrosis markers were evaluated. Transcriptome analysis was carried out using the control cells and cells treated with TGF-β1 and 240 μg/mL HP.
RESULTS:
HP obviously alleviated BLM-induced lung function damage and fibrotic changes in mice, evidenced by improved respiratory function, lung tissue morphology and structure, inflammatory infiltration, and collagen deposition and reduced expressions of fibrotic proteins. HP at the high dose produced similar effect to PFD. In TGF-β1-induced HFL1 cells, treatment with 240 μg/mL HP significantly reduced the mRNA and protein expression levels of α-SMA and FN. Transcriptome analysis revealed that multiple key genes and pathways mediated the protective effect of HP against pulmonary fibrosis.
CONCLUSIONS
HP alleviates pulmonary fibrosis in both the mouse model and cell model, possibly as the result of the synergistic effects of its multiple active components.
Animals
;
Pulmonary Fibrosis/chemically induced*
;
Bleomycin/adverse effects*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Fibroblasts/drug effects*
;
Lung/pathology*
;
Transforming Growth Factor beta1/pharmacology*
;
Myofibroblasts/drug effects*
;
Humans
;
Pyridones
8.Aloe-emodin inhibits scar tissue fibrosis through thrombospondin-1-PI3k-Akt pathway.
Hongbao GENG ; Xingyi ZHANG ; Siwei ZHOU ; Na LI ; Jia LIU ; Xuewei YUAN ; Chunliu NING ; Xudong ZHANG ; Wei HUANG
West China Journal of Stomatology 2025;43(5):636-647
OBJECTIVES:
To propose a hypothesis that aloe-emodin may inhibit scar tissue fibrosis through thrombospondin-1(THBS1)-PI3K-Akt pathway.
METHODS:
By cultivating fibroblasts derived from scar tissue after cleft palate surgery in humans, aloe emodin of different concentrations (10, 20, 30, 40 and 50 μmol/L) was added to the cells which activity was detected. At the same time, transcriptome sequencing was performed on scar tissue and cells, and bioinformatics methods were used to explore potential targets and signaling pathways of scar tissue fibrosis.
RESULTS:
Aloe-emodin had a concentration dependent inhibitory effect on fibroblast proliferation,with the 40 μmol/L concentration group showing the most significant effect. The results of tissue and cell sequencing indicated that differentially expressed genes were significantly enriched in extracellular matrix-receptor interaction pathway, and shared a common differential gene which was THBS1. The ORA analysis results indicated that differentially expressed genes, including THBS1, were significantly enriched in the PI3K-Akt signaling pathway.
CONCLUSIONS
Aloe emodin may inhibit the PI3K-Akt pathway by downregulating THBS1, thereby reducing the proliferation activity of fibroblasts derived from postoperative palatal scar tissue.
Thrombospondin 1/genetics*
;
Humans
;
Signal Transduction/drug effects*
;
Fibroblasts/cytology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Fibrosis
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cicatrix/metabolism*
;
Cell Proliferation/drug effects*
;
Anthraquinones/pharmacology*
;
Cells, Cultured
9.Research advances on application of botulinum toxin type A in scar prevention and treatment.
Zhen YU ; Pan REN ; Han ZHANG ; Hui CHEN ; Fu Xin MA
Chinese Journal of Burns 2022;38(4):385-388
The wound healing time, tension of wound edge, proliferation of fibroblast, and extracellular matrix deposition are the important factors of scar formation, and botulinum toxin type A can regulate the above. Prevention and treatment of scar with botulinum toxin type A is one of the hot topics of clinical research in recent years. This paper briefly reviews researches by scholars at home and abroad on the mechanism, clinical application, complications, and adverse effects of botulinum toxin type A in scar prevention and treatment.
Botulinum Toxins, Type A/therapeutic use*
;
Cicatrix/prevention & control*
;
Extracellular Matrix/pathology*
;
Fibroblasts/drug effects*
;
Humans
;
Wound Healing/drug effects*
10.Triptolide inhibits inflammatory response and migration of fibroblast like synovial cells in rheumatoid arthritis through the circRNA 0003353/JAK2/STAT3 signaling pathway.
Jie WANG ; Jian LIU ; Jian Ting WEN ; Xin WANG
Journal of Southern Medical University 2022;42(3):367-374
OBJECTIVE:
To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect.
METHODS:
We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells.
RESULTS:
The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01).
CONCLUSION
The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.
Arthritis, Rheumatoid/pathology*
;
Cells, Cultured
;
Diterpenes/pharmacology*
;
Epoxy Compounds/pharmacology*
;
Fibroblasts/pathology*
;
Humans
;
Interleukin-17/metabolism*
;
Interleukin-4/metabolism*
;
Interleukin-6/metabolism*
;
Janus Kinase 2/metabolism*
;
Leukocytes, Mononuclear/metabolism*
;
Phenanthrenes/pharmacology*
;
RNA, Circular/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Synovial Membrane/pathology*

Result Analysis
Print
Save
E-mail