1.Systemic comparison of molecular characteristics in different skin fibroblast senescent models.
Xiaokai FANG ; Shan ZHANG ; Mingyang WU ; Yang LUO ; Xingyu CHEN ; Yuan ZHOU ; Yu ZHANG ; Xiaochun LIU ; Xu YAO
Chinese Medical Journal 2025;138(17):2180-2191
BACKGROUND:
Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models.
METHODS:
Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models.
RESULTS:
In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids.
CONCLUSIONS
Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Humans
;
Fibroblasts/drug effects*
;
Cellular Senescence/physiology*
;
Skin/metabolism*
;
Child
;
Transcriptome/genetics*
;
Aged
;
Ultraviolet Rays
;
Cells, Cultured
;
Galactose/pharmacology*
2.Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome.
Su-Bei ZHANG ; Xin SUN ; Qi WU ; Jun-Ping WU ; Huai-Yong CHEN
Chinese Medical Journal 2016;129(17):2040-2044
BACKGROUNDBronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS.
METHODSSuspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance.
RESULTSLPCs were isolated with the surface phenotype of CD31-CD34-CD45- EpCAM+Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05).
CONCLUSIONThe epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS.
Animals ; Benzamides ; pharmacology ; Bronchiolitis Obliterans ; metabolism ; pathology ; Cells, Cultured ; Coculture Techniques ; Dioxoles ; pharmacology ; Fibroblasts ; cytology ; drug effects ; metabolism ; physiology ; Flow Cytometry ; Humans ; Mice ; Stem Cells ; cytology ; drug effects ; metabolism
3.Rapamycin Inhibits Transforming Growth Factor beta1-Induced Fibrogenesis in Primary Human Lung Fibroblasts.
Yu GAO ; Xuefeng XU ; Ke DING ; Yan LIANG ; Dianhua JIANG ; Huaping DAI
Yonsei Medical Journal 2013;54(2):437-444
PURPOSE: The present study was designed to determine whether rapamycin could inhibit transforming growth factor beta1 (TGF-beta1)-induced fibrogenesis in primary lung fibroblasts, and whether the effect of inhibition would occur through the mammalian target of rapamycin (mTOR) and its downstream p70S6K pathway. MATERIALS AND METHODS: Primary normal human lung fibroblasts were obtained from histological normal lung tissue of 3 patients with primary spontaneous pneumothorax. Growth arrested, synchronized fibroblasts were treated with TGF-beta1 (10 ng/mL) and different concentrations of rapamycin (0.01, 0.1, 1, 10 ng/mL) for 24 h. We assessed m-TOR, p-mTOR, S6K1, p-S6K1 by Western blot analysis, detected type III collagen and fibronectin secreting by ELISA assay, and determined type III collagen and fibronectin mRNA levels by real-time PCR assay. RESULTS: Rapamycin significantly reduced TGF-beta1-induced type III collagen and fibronectin levels, as well as type III collagen and fibronectin mRNA levels. Furthermore, we also found that TGF-beta1-induced mTOR and p70S6K phosphorylation were significantly down-regulated by rapamycin. The mTOR/p70S6K pathway was activated through the TGF-beta1-mediated fibrogenic response in primary human lung fibroblasts. CONCLUSION: These results indicate that rapamycin effectively suppresses TGF-beta1-induced type III collagen and fibronectin levels in primary human lung fibroblasts partly through the mTOR/p70S6K pathway. Rapamycin has a potential value in the treatment of pulmonary fibrosis.
Cells, Cultured
;
Collagen Type III/metabolism
;
Fibroblasts/*drug effects/metabolism/physiology
;
Fibronectins/metabolism
;
Humans
;
Lung/cytology/drug effects
;
Pulmonary Fibrosis/drug therapy
;
Signal Transduction/drug effects
;
Sirolimus/*pharmacology
;
TOR Serine-Threonine Kinases/metabolism/physiology
;
Transforming Growth Factor beta1/*antagonists & inhibitors/physiology
4.Effects of zhuhong ointment on MMPs activities and production by HSF.
Yan LIN ; Miao-Ke DAI ; Xiu-Juan HE ; Ping LI
China Journal of Chinese Materia Medica 2013;38(11):1795-1799
HuaFu Shengji is the primary traditional Chinese medicine (TCM) therapy for treating chronic skin ulcer. The high activities of the protein enzyme in the wound fluids is one of the main cause of healing delay. In order to investigate the effect of TCM Zhuhong ointment for promoting wound healing. This research focused on its influence on matrix metalloproteinase (MMP) activities in wound fluids with TCM Yang syndromes, directly on the activated MMP-1,2 activities in vitro and on MMP-1,-2,-9 production by HSF. 8 wound fluid samples were collected, which were diagnosed Yang Syndromes in TCM. Wound fluid activities of MMP-2 and MMP-9 were measured by gelatin zymogram assay. MMP-1 and MMP-2 activities in vitro were measured by substrate cleavage. CCK-8 was used to observe the toxicity of Zhuhong ointment on HSF. MMP-1,-2,-9 production by HSF were detected by confocal microscope. Zhuhong ointment from 1 to 25 g x L(-1) obviously inhibited MMP-2 activity in wound fluid. When Zhuhong ointment was over 5 g x L(-1), it showed significantly inhibitory effect on wound fluid MMP-9 activity. In vitro study, when the mercury concentration was 320 mg x L(-1), Zhuhong ointment solution directly inhibited both MMP-1 activity and MMP-2. But mercury concentration from 0.51-2.56 mg x L(-1), it could activate MMP-1 activity, and from 0.51-64 mg x L(-1), activate MMP-2 activity instead. The mercury concentration when Zhuhong ointment saturated in DMEM was 39.6 mg x L(-1). When the mercury concentration was over 1.23 mg x L(-1), Zhuhong ointment showed toxicity to HSF. At 1.23, 0.62, 0.31 mg x L(-1) of mercury concentration, it increased MMP-1 expression by HSF, and at 1.23, 0.62 mg x L(-1), decreased MMP-2 expression. However, at 1.23, 0.62, 0.31 mg x L(-1), it decreased MMP-9 expression. At higher concentration, Zhuhong ointment can inhibit MMP-2, MMP-9 activities in wound fluid with dose-dependent way and show a direct inhibitory effect on activated MMP-1 and MMP-2 in vitro. But at a lower concentration, it showed two-way adjustment, with increased MMP-1, MMP-2 activities and its expression by HSF and decreased MMP-9 activity.
Body Fluids
;
enzymology
;
Cells, Cultured
;
Dermatitis
;
drug therapy
;
enzymology
;
physiopathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibroblasts
;
drug effects
;
enzymology
;
physiology
;
Humans
;
Matrix Metalloproteinase 1
;
metabolism
;
Matrix Metalloproteinase 2
;
metabolism
;
Matrix Metalloproteinase 9
;
metabolism
;
Wound Healing
;
drug effects
5.Myeloid differentiation primary response protein 88 blockade upregulates indoleamine 2,3-dioxygenase expression in rheumatoid synovial fibroblasts.
Mi Kyung PARK ; Hye Jwa OH ; Yang Mi HEO ; Eun Mi PARK ; Mi La CHO ; Ho Youn KIM ; Sung Hwan PARK
Experimental & Molecular Medicine 2011;43(8):446-454
Indoleamine 2,3-dioxygenase (IDO) is a key negative regulator of immune responses and has been implicated in tumor tolerance, autoimmune disease and asthma. IDO was detected in the joint synovial tissue in the inflammatory microenvironment of rheumatoid arthritis (RA), but IDO expression in joint synovial tissue is not sufficient to overcome the inflamed synovial environment. This study aimed to unravel the mechanisms involving the failure to activate tolerogenic IDO in the inflamed joint. We demonstrate that both poly (I:C) and lipopolysaccharide (LPS) induce expression of IDO in synovial fibroblasts. However, inflammatory cytokines such as IL-17, TNF-alpha, IL-12, IL-23 and IL-16 did not induce IDO expression. Poly (I:C) appeared to induce higher IDO expression than did LPS. Surprisingly, toll-like receptor (TLR)4-mediated IDO expression was upregulated after depletion of myeloid differentiation primary response protein 88 (MyD88) in synovial fibroblasts using small interfering RNA (siRNA). IDO, TLR3 and TLR4 were highly expressed in synovial tissue of RA patients compared with that of osteoarthritis patients. In addition, RA patients with severe disease activity had higher levels of expression of IDO, TLR3 and TLR4 in the synovium than patients with mild disease activity. These data suggest that upregulation of IDO expression in synovial fibroblasts involves TLR3 and TLR4 activation by microbial constituents. We showed that the mechanisms responsible for IDO regulation primarily involve MyD88 signaling in synovial fibroblasts, as demonstrated by siRNA-mediated knockdown of MyD88.
Adaptor Proteins, Vesicular Transport/genetics/metabolism
;
Arthritis, Rheumatoid/*metabolism
;
Blotting, Western
;
Cells, Cultured
;
Fibroblasts/drug effects/*metabolism
;
Humans
;
Immunohistochemistry
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics/*metabolism
;
Interleukin-12/pharmacology
;
Interleukin-16/pharmacology
;
Interleukin-17/pharmacology
;
Interleukin-23/pharmacology
;
Lipopolysaccharides/pharmacology
;
Myeloid Differentiation Factor 88/genetics/*metabolism
;
Poly I-C/pharmacology
;
Polymerase Chain Reaction
;
RNA, Small Interfering/genetics/physiology
;
Synovial Membrane/*cytology
;
Toll-Like Receptor 4/genetics/metabolism
;
Tumor Necrosis Factor-alpha/pharmacology
6.Thrombin promotes human lung fibroblasts to proliferate via NADPH oxidase/reactive oxygen species/extracellular regulated kinase signaling pathway.
Sheng-yu ZHOU ; Wei XIAO ; Xiu-jie PAN ; Mao-xiang ZHU ; Zhi-hua YANG ; Chun-yan ZHENG
Chinese Medical Journal 2010;123(17):2432-2439
BACKGROUNDThrombin is a multifunctional serine protease that plays a crucial role in hemostasis following tissue injury. In addition to its procoagulation effect, thrombin is also a potent mesenchymal cell mitogen, therefore it plays important roles in the local proliferation of mesenchymal cells in the tissue repair process. Reactive oxygen species (ROS) can induce some human cells to proliferate at lower rates while at higher concentrations they promote cells to undergo apoptosis or necrosis. Accumulative evidence suggests that thrombin can induce some cells to produce ROS. Based on these observations, we provide a hypothesis that thrombin can stimulate human lung fibroblasts to produce ROS, which play an important role in human lung fibroblast proliferation.
METHODSROS were detected in fibroblasts at 30 minutes and 60 minutes following thrombin (20 U/ml) exposure using flow cytometry. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) was assayed in lung fibroblasts using a commercial kit following treatment with thrombin at different concentrations. NADPH oxidase and the extracellular regulated kinase1/2 (ERK1/2) signaling pathway were detected by Western blotting after thrombin stimulation to lung fibroblasts.
RESULTSThrombin, at 20 U/ml, stimulated human lung fibroblasts (HLF) to generate ROS in a time dependent manner. The ratio of GSH/GSSG in fibroblasts treated with thrombin showed a significant decrease. NADPH oxidase was activated and the ERK1/2 signal pathway was involved in the proliferation process of fibroblasts treated with thrombin.
CONCLUSIONThe activation of NADPH oxidase by thrombin leads to the production of ROS, which promotes fibroblasts proliferation via activation of the ERK1/2 signaling pathway.
Cell Proliferation ; drug effects ; Cells, Cultured ; Extracellular Signal-Regulated MAP Kinases ; analysis ; physiology ; Fibroblasts ; drug effects ; physiology ; Flow Cytometry ; Glutathione ; metabolism ; Humans ; Lung ; cytology ; NADPH Oxidases ; analysis ; physiology ; Reactive Oxygen Species ; metabolism ; Signal Transduction ; physiology ; Thrombin ; pharmacology
7.Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts.
Sangmin KIM ; Jang Hee OH ; Youngae LEE ; Jeongyoon LEE ; Kwang Hyun CHO ; Jin Ho CHUNG
Experimental & Molecular Medicine 2010;42(1):38-46
Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-beta-cyclodextrin (MbetaCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (> or = 200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts.
Anthracenes/pharmacology
;
Butadienes/pharmacology
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cholesterol/metabolism/*physiology
;
Cyclodextrins/pharmacology
;
Enzyme Inhibitors/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors/physiology
;
Fibroblasts/*drug effects/*metabolism/ultrastructure
;
Humans
;
Immunoblotting
;
Immunoprecipitation
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/physiology
;
Matrix Metalloproteinase 2/*metabolism
;
Microscopy, Electron, Transmission
;
Nitriles/pharmacology
;
Tissue Inhibitor of Metalloproteinase-2/*metabolism
8.Regulation of calculus bovis on the function of mice oral fibroblasts.
Jianping DAI ; Jun CHEN ; Bangxing HAN ; Yufei BEI ; Xiaokun ZHOU
Chinese Journal of Biotechnology 2009;25(3):448-451
To explore the influence of calculus bovis on the function of primary cultured mice oral fibroblasts, we determined the effects of calculus bovis on the fibroblast proliferation, collagen production, matrix metalloproteinases-2, -9 activities and tissue inhibitor of metalloproteinase-1 production by MTT assay, chloramine T method, gelatin zymography and enzyme-linked immunosorbent assays respectively. The results showed that calculus bovis could significantly inhibit the proliferation of fibroblasts and collagen synthesis in a concentration dependent manner, could significantly (P<0.05) suppress matrix metalloproteinases-2 activity and very significantly (P<0.01) inhibit the production of tissue inhibitor of metalloproteinase-1. In conclusion, the major function of calculus bovis in the process of ulcer healing is not to promote tissue regeneration, the mechanism that calculus bovis inhibits collagen synthesis may be partly due to its ability to very significantly (P<0.01) suppress the production of tissue inhibitor of metalloproteinase-1.
Animals
;
Cattle
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Cholelithiasis
;
chemistry
;
veterinary
;
Collagen
;
drug effects
;
metabolism
;
Fibroblasts
;
cytology
;
physiology
;
Materia Medica
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Mouth Mucosa
;
cytology
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
metabolism
9.Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappa B pathway in human dermal fibroblasts.
Young Rae LEE ; Eun Mi NOH ; Eun Yong JEONG ; Seok Kweon YUN ; Young Ju JEONG ; Jong Hyeon KIM ; Kang Beom KWON ; Byeong Soo KIM ; Sung Ho LEE ; Chang Sik PARK ; Jong Suk KIM
Experimental & Molecular Medicine 2009;41(8):548-554
Cordycepin (3'-deoxyadenosine) has been shown to exhibit many pharmacological activities, including anti-cancer, anti-inflammatory, and anti-infection activities. However, the anti-skin photoaging effects of cordycepin have not yet been reported. In the present study, we investigated the inhibitory effects of cordycepin on matrix metalloproteinase-1 (MMP-1) and -3 expressions of the human dermal fibroblast cells. Western blot analysis and real-time PCR revealed cordycepin inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated NF-kappa B activity, which was determined by I kappa B alpha degradation, nuclear localization of p50 and p65 subunit, and NF-kappa B binding activity. However, UVB-induced NF-kappa B activation and MMP expression were completely blocked by cordycepin pretreatment. These findings suggest that cordycepin could prevent UVB-induced MMPs expressions through inhibition of NF-kappa B activation. In conclusion, cordycepin might be used as a potential agent for the prevention and treatment of skin photoaging.
Aging/physiology
;
Cells, Cultured
;
Deoxyadenosines/*pharmacology
;
*Dermis/cytology/drug effects/physiology/radiation effects
;
Dose-Response Relationship, Drug
;
Enzyme Induction/drug effects
;
Fibroblasts/drug effects/metabolism/radiation effects
;
Gene Expression Regulation, Enzymologic
;
Humans
;
Infant, Newborn
;
Male
;
*Matrix Metalloproteinase 1/antagonists & inhibitors/biosynthesis/genetics/radiation effects
;
Matrix Metalloproteinase 3/antagonists & inhibitors/*biosynthesis/genetics/radiation effects
;
NF-kappa B/*antagonists & inhibitors/genetics/metabolism
;
Skin/physiopathology/radiation effects
;
*Ultraviolet Rays
10.Role of extracellular signal-regulated kinase 1/2 on inhibition of N-acetyl-seryl-aspartyl-lysyl-proline on proliferation and collagen synthesis of cultured rat pulmonary fibroblasts induced by platelet-derived growth factor.
Kun-Fei WU ; Yang FANG ; Dan-Dan LI ; Li-Juan ZHANG ; Qian LI ; Rui-Min WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2009;27(7):385-389
OBJECTIVETo investigate the role of extracellular signal-regulated kinase 1/2 on the inhibition of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) on the proliferation and collagen synthesis of cultured rat pulmonary fibroblasts induced by platelet-derived growth factor (PDGF).
METHODSPulmonary fibroblasts were prepared from lungs of neonatal Wistar rats as described previously. Cells were divided into 4 groups: (1) control group (0.4% FBS group); (2) PDGF (10 ng/ml) stimulated group; (3) PD98059+PDGF group (25 micromol/L PD98059+10 ng/ml PDGF); (4) AcSDKP+PDGF group (10(-8) mol/L AcSDKP+10 ng/ml PDGF). All experiments were performed in the fourth passages. Metabolic activity of fibroblasts was observed by MTT, and expressions of type I and type III collagen were measured by immunocytochemistry and western blot. Expressions of phospho-ERK1/2 and ERK1/2 were detected by western blot.
RESULTSCompared with control group, exposure of pulmonary fibroblasts to 10 ng/ml PDGF increased cell metabolic activity, expression of type I and type III collagen and phosphorylation of ERK1/2. 25 micromol/L PD98059 and AcSDKP both could inhibit the metabolic activity of pulmonary fibroblasts, type I and type III collagen synthesis and phosphorylation of ERK1/ 2 induced by PDGF, with significant differences (P < 0.05). AcSDKP+PDGF group compared with PDGF stimulated group, metabolic activity of pulmonary fibroblasts decreased to 77.4%. Immunocytochemistry result showed that in AcSDKP+PDGF group, expressions of type I and type III collagen decreased to 69.3% and 67.2% compared with those of PDGF stimulated group. Western blot result showed that in AcSDKP+PDGF group, expressions of type I and type III collagen decreased to 92.4% and 78.0%, phospho-ERK1/2 decreased to 83.5% compared with those of PDGF stimulated group, with significant differences (P < 0.05).
CONCLUSIONERK1/2 plays an important role in the inhibition of AcSDKP on the proliferation and collagen synthesis of cultured rat pulmonary fibroblasts induced by PDGF.
Animals ; Cell Proliferation ; drug effects ; Cells, Cultured ; Collagen ; biosynthesis ; Fibroblasts ; drug effects ; metabolism ; physiology ; MAP Kinase Signaling System ; physiology ; Oligopeptides ; pharmacology ; Platelet-Derived Growth Factor ; pharmacology ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail