1.Interaction between macrophages and ferroptosis: Metabolism, function, and diseases.
Qiaoling JIANG ; Rongjun WAN ; Juan JIANG ; Tiao LI ; Yantong LI ; Steven YU ; Bingrong ZHAO ; Yuanyuan LI
Chinese Medical Journal 2025;138(5):509-522
Ferroptosis, an iron-dependent programmed cell death process driven by reactive oxygen species-mediated lipid peroxidation, is regulated by several metabolic processes, including iron metabolism, lipid metabolism, and redox system. Macrophages are a group of innate immune cells that are widely distributed throughout the body, and play pivotal roles in maintaining metabolic balance by its phagocytic and efferocytotic effects. There is a profound association between the biological functions of macrophage and ferroptosis. Therefore, this review aims to elucidate three key aspects of the unique relationship between macrophages and ferroptosis, including macrophage metabolism and their regulation of cellular ferroptosis; ferroptotic stress that modulates functions of macrophage and promotion of inflammation; and the effects of macrophage ferroptosis and its role in diseases. Finally, we also summarize the possible mechanisms of macrophages in regulating the ferroptosis process at the global and local levels, as well as the role of ferroptosis in the macrophage-mediated inflammatory process, to provide new therapeutic insights for a variety of diseases.
Ferroptosis/physiology*
;
Macrophages/metabolism*
;
Humans
;
Animals
;
Iron/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Lipid Peroxidation/physiology*
;
Inflammation/metabolism*
2.Research progress on the role and mechanism of ferroptosis in heart diseases.
Yu-Tong CUI ; Xin-Xin ZHU ; Qi ZHANG ; Ai-Juan QU
Acta Physiologica Sinica 2025;77(1):75-84
Cardiovascular disease remains the leading cause of death in China, with its morbidity and mortality continue to rise. Ferroptosis, a unique form of iron-dependent cell death, plays a major role in many heart diseases. The classical mechanisms of ferroptosis include iron metabolism disorder, oxidative antioxidant imbalance and lipid peroxidation. Recent studies have found many additional mechanisms of ferroptosis, such as coenzyme Q10, ferritinophagy, lipid autophagy, mitochondrial metabolism disorder, and the regulation by nuclear factor erythroid 2-related factor 2 (NRF2). This article reviews recent advances in understanding the mechanisms of ferroptosis and its role in heart failure, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, myocardial toxicity of doxorubicin, septic cardiomyopathy, and arrhythmia. Furthermore, we discuss the potential of ferroptosis inhibitors/inducers as therapeutic targets for heart diseases, suggesting that ferroptosis may be an important intervention target of heart diseases.
Ferroptosis/physiology*
;
Humans
;
Heart Diseases/physiopathology*
;
NF-E2-Related Factor 2/physiology*
;
Animals
;
Myocardial Reperfusion Injury/physiopathology*
;
Lipid Peroxidation
;
Heart Failure/physiopathology*
;
Iron/metabolism*
;
Diabetic Cardiomyopathies/physiopathology*
;
Ubiquinone/analogs & derivatives*
3.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
4.Research progress on ferroptosis mediated by microglia in hypoxic-ischemic brain damage.
Tao GUO ; Hanjun ZUO ; Xianfeng KUANG ; Shukun ZHANG ; Bolin CHEN ; Lixing LUO ; Xiao YANG ; Zhao WANG ; Juanjuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):552-558
In hypoxic-ischemic brain damage (HIBD), the programmed cell death known as ferroptosis is significantly activated. Microglial cells demonstrate a high level of sensitivity to iron accumulation. Understanding how to regulate the dual role of microglia and transforming the microglial ferroptosis to a moderate and controllable process has considerable implications for the targeted treatment in HIBD. This paper serves as an overview of microglia-mediated ferroptosis in HIBD as a disease model. We discuss various aspects centered around microglia, including pathophysiological mechanisms, polarization and functions of microglia, molecular mechanisms of ferroptosis, signaling pathways, and therapeutic strategies. The review aims to provide a reference for studies of ferroptosis in microglia.
Microglia/physiology*
;
Ferroptosis/physiology*
;
Humans
;
Animals
;
Hypoxia-Ischemia, Brain/pathology*
;
Signal Transduction
5.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
6.Ferroptosis: from molecules to diseases.
Xuesong WANG ; Di KANG ; Yingying WANG ; Ye SHAO ; Hongbo LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):937-953
Ferroptosis is a regulated form of cell death, with its core mechanism being intracellular iron overload-induced lipid peroxidation, leading to cellular dysfunction and mitochondrial structural abnormalities. Ferroptosis is closely related to various diseases including neurodegenerative disorders, tumors, and ischemia-reperfusion organ damage, and has become a potential therapeutic target. Iron is essential for life but can also cause cell death. Despite continuous progress in iron-related biomedical research, many questions remain unanswered. Advances in high-throughput technologies, genomics and proteomics are expected to reveal the cellular iron regulatory mechanism and open up new therapeutic approaches for ferroptosis-related diseases. This article reviews the research progress on iron in terms of its biology, metabolism, regulation, and related diseases, aiming to provide clues and references for developing new ferroptosis-targeted therapeutic strategies and facilitating more in-depth molecular studies from multiple perspectives.
Humans
;
Ferroptosis/physiology*
;
Iron/metabolism*
;
Animals
;
Neoplasms/metabolism*
;
Neurodegenerative Diseases/metabolism*
7.Research progress on N6-methyladenosine and ferroptosis in childhood combined allergic rhinitis and asthma syndrome.
Jing-Yi LI ; Yu-Jian LI ; Sheng-Lin LAI ; Xuan KAN
Chinese Journal of Contemporary Pediatrics 2025;27(2):242-247
Combined allergic rhinitis and asthma syndrome (CARAS) is one of the common chronic airway inflammatory diseases in children. With the development of epigenetics, research on CARAS has gradually extended from protein levels to molecular levels, such as transcription and post-transcriptional regulation. N6-methyladenosine (m6A) methylation and ferroptosis have emerged as promising research hotspots in recent years, playing crucial roles in tumors, growth and development, and allergic diseases. This paper aims to summarize the characteristics of m6A and ferroptosis, along with their roles in the onset and progression of CARAS in children, thereby providing new insights and strategies for the diagnosis and treatment of childhood CARAS.
Humans
;
Adenosine/physiology*
;
Asthma/etiology*
;
Ferroptosis
;
Rhinitis, Allergic/etiology*
;
Child
8.The role of polyunsaturated fatty acid lipid peroxidation in ferroptosis after intracerebral hemorrhage: a review of mecha-nisms and therapeutic implications.
Man GUO ; Guohui ZHAO ; Zhibiao CAI ; Zhenyu ZHANG ; Jie ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(5):694-704
Ferroptosis, a regulated cell death process distinct from apoptosis, is characterized by iron dysregulation and reactive oxygen species (ROS) accumulation. After intracerebral hemorrhage (ICH), decreased cerebral blood flow and iron released from erythrocytes trigger lipid peroxidation-particularly of polyunsaturated fatty acids (PUFAs)-through a cascade of reactions in local brain tissues, promoting ferroptosis. Mitochondrial dysfunction and neuroinflammation further elevate ROS, exacerbating lipid peroxidation and accelerating neuronal ferroptosis. Thus, PUFA peroxidation and associated metabolic pathways play a critical role in ICH-related neuronal damage. This review summarizes current understanding of how PUFA peroxidation contributes to ferro-ptosis after ICH, discusses key regulatory mechanisms involving lipid and iron metabolism, and highlights potential therapeutic strategies targeting ferroptosis to improve neurological outcomes.
Ferroptosis/physiology*
;
Humans
;
Cerebral Hemorrhage/pathology*
;
Lipid Peroxidation
;
Fatty Acids, Unsaturated/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iron/metabolism*
;
Animals
;
Mitochondria/metabolism*
9.β-sitosterol, an important component in the fruits of Alpinia oxyphylla Miq., prolongs lifespan of Caenorhabditis elegans by suppressing the ferroptosis pathway.
Junyi LI ; Siyuan CHEN ; Liyao XIE ; Jin WANG ; Ao CHENG ; Shaowei ZHANG ; Jiyu LIN ; Zhihan FANG ; Yirui PAN ; Chonghe CUI ; Gengxin CHEN ; Chao ZHANG ; Li LI
Journal of Southern Medical University 2025;45(8):1751-1757
OBJECTIVES:
To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Alpinia oxyphylla Miq., in C. elegans and its regulatory effect on ETS-5 gene to modulate ferroptosis.
METHODS:
C. elegans treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function. The effect of ETS-5 gene knockdown on survival time of C. elegans was observed, and the changes in fat accumulation and lipid redox homeostasis in the transfected C. elegans were assessed using Oil Red O staining and by detecting MDA levels and the GSH/GSSG ratio. The mRNA expression levels of ferroptosis-related genes (FTN-1, GPX-1 and AAT-9) were detected using qPCR. The effects of BS treatment and ETS-5 knockdown on AAT-9 enzyme activity in C. elegans were examined. The effect of BS on nuclear localization of FEV (the human homolog of ETS-5) was validated in cultured human umbilical venous endothelial cells (HUVECs).
RESULTS:
Both BS treatment and ETS-5 knockdown significantly prolonged the lifespan, promoted lipid accumulation and reduced lipid peroxidation in C. elegans. ETS-5 knockdown resulted in upregulated expressions of the ferroptosis repressors GPX-1, AAT-9 and FTN-1 and increased the GSH/GSSG ratio in C. elegans.
CONCLUSIONS
BS inhibits ferroptosis in C. elegans by suppressing the expression of ETS-5 transcription factor and hence the activity of AAT-9 enzyme, a key gene for ferroptosis, which in turn prolongs the lifespan of C. elegans.
Animals
;
Caenorhabditis elegans/physiology*
;
Ferroptosis/drug effects*
;
Alpinia/chemistry*
;
Sitosterols/pharmacology*
;
Longevity/drug effects*
;
Fruit/chemistry*
;
Humans
10.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds

Result Analysis
Print
Save
E-mail