1.Ferroptosis contributes to immunosuppression.
Nina HE ; Dun YUAN ; Minjie LUO ; Qing XU ; Zhongchi WEN ; Ziqin WANG ; Jie ZHAO ; Ying LIU
Frontiers of Medicine 2025;19(1):1-22
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term "immunosuppression" refers to various factors that can directly harm immune cells' structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
Ferroptosis/immunology*
;
Humans
;
Immune Tolerance/immunology*
;
Animals
;
Immunosuppression Therapy
;
Iron/metabolism*
;
Neoplasms/immunology*
2.Causal relationship between ferroptosis-related gene HSPA5 and hepatocellular carcinoma: a study based on mendelian randomization and mediation analysis.
Bing CUI ; Chengcheng XU ; Yuan XU ; Aqin CHEN ; Chaoming MAO ; Yuehua CHEN
Journal of Zhejiang University. Medical sciences 2024;53(6):691-698
OBJECTIVES:
To explore a causal relationship between ferroptosis-related gene heat shock protein A5 (HSPA5) and hepatocellular carcinoma (HCC).
METHODS:
A two-sample Mendelian randomization (MR) design was employed to evaluate the causal relationships among HSPA5, regulatory T cells (Tregs), and HCC. Single nucleotide polymorphisms (SNPs) associated with HSPA5, Tregs and HCC were selected as instrumental variables through publicly available genome-wide association studies (GWAS) databases. MR analysis was used to assess the direct effect of HSPA5 on HCC, followed by two-step MR to analyze the potential mediating role of Tregs. Reverse MR analysis was conducted with HCC as the exposure and HSPA5 as the outcome. Inverse variance weighting was the primary method for testing causal associations in all MR analyses. Robustness of the results was confirmed through MR-Egger, weighted median, weighted mode, and simple mode methods. Heterogeneity of instrumental variables was evaluated using Cochrane's Q statistic, while pleiotropy was tested by MR-Egger intercept and MR-PRESSO, with leave-one-out sensitivity analysis performed for robustness. Data from The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) were utilized to verify the expression levels of HSPA5 in HCC tissues and its correlation with Tregs to reveal the interaction mechanisms between HSPA5 and Tregs in HCC progression and their relationship with patient prognosis.
RESULTS:
MR analysis showed a positive correlation between elevated HSPA5 expression and HCC risk (all P<0.01), while reverse MR analysis found no statistically significant association between HCC and HSPA5 (P>0.05). HSPA5 expression was significantly correlated with Tregs function (all P<0.05), and the enrichment of Tregs in HCC microenvironment was positively associated with HCC progression (all P<0.05). Mediation analysis indicated that Tregs accounted for 5.00% and 7.45% of the mediation effect between HSPA5 and HCC. TCGA and HPA database analysis revealed that both HSPA5 mRNA and protein expression levels were higher in HCC tissues compared to normal tissues, and high HSPA5 expression was significantly associated with poor prognosis. Immune infiltration analysis confirmed a significant positive correlation between HSPA5 and Tregs, with high Tregs infiltration closely related to HCC progression.
CONCLUSIONS
Elevated HSPA5 expression is significantly associated with HCC development and poor prognosis. HSPA5 may promote HCC progression by regulating the function of Tregs in the tumor microenvironment.
Humans
;
Liver Neoplasms/genetics*
;
Carcinoma, Hepatocellular/genetics*
;
Endoplasmic Reticulum Chaperone BiP
;
Mendelian Randomization Analysis
;
Genome-Wide Association Study
;
Polymorphism, Single Nucleotide
;
Heat-Shock Proteins/genetics*
;
Ferroptosis/genetics*
;
T-Lymphocytes, Regulatory/immunology*
3.Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma.
Yuqian MO ; Zhilin ZOU ; Erbao CHEN
Journal of Zhejiang University. Medical sciences 2024;53(6):715-725
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Ferroptosis
;
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/metabolism*
;
Tumor Microenvironment/immunology*
;
Lipid Peroxidation
;
Immunotherapy
;
Oxidative Stress
;
Iron/metabolism*
;
Lipid Metabolism
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Macrophages/immunology*
;
Amino Acid Transport System y+
4.Ferroptosis, radiotherapy, and combination therapeutic strategies.
Guang LEI ; Chao MAO ; Yuelong YAN ; Li ZHUANG ; Boyi GAN
Protein & Cell 2021;12(11):836-857
Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.
Ferroptosis/immunology*
;
Humans
;
Immunotherapy
;
Neoplasms/therapy*
;
Radiotherapy

Result Analysis
Print
Save
E-mail