1.Computational pathology in precision oncology: Evolution from task-specific models to foundation models.
Yuhao WANG ; Yunjie GU ; Xueyuan ZHANG ; Baizhi WANG ; Rundong WANG ; Xiaolong LI ; Yudong LIU ; Fengmei QU ; Fei REN ; Rui YAN ; S Kevin ZHOU
Chinese Medical Journal 2025;138(22):2868-2878
With the rapid development of artificial intelligence, computational pathology has been seamlessly integrated into the entire clinical workflow, which encompasses diagnosis, treatment, prognosis, and biomarker discovery. This integration has significantly enhanced clinical accuracy and efficiency while reducing the workload for clinicians. Traditionally, research in this field has depended on the collection and labeling of large datasets for specific tasks, followed by the development of task-specific computational pathology models. However, this approach is labor intensive and does not scale efficiently for open-set identification or rare diseases. Given the diversity of clinical tasks, training individual models from scratch to address the whole spectrum of clinical tasks in the pathology workflow is impractical, which highlights the urgent need to transition from task-specific models to foundation models (FMs). In recent years, pathological FMs have proliferated. These FMs can be classified into three categories, namely, pathology image FMs, pathology image-text FMs, and pathology image-gene FMs, each of which results in distinct functionalities and application scenarios. This review provides an overview of the latest research advancements in pathological FMs, with a particular emphasis on their applications in oncology. The key challenges and opportunities presented by pathological FMs in precision oncology are also explored.
Humans
;
Precision Medicine/methods*
;
Medical Oncology/methods*
;
Artificial Intelligence
;
Neoplasms/pathology*
;
Computational Biology/methods*
2.Mingshi Formula (明视方) for Low Myopia in Children with Heart Yang Insufficiency Syndrome: A Multicentre, Double-Blind, Randomised Placebo-Controlled Study
Jianquan WANG ; Xinyue HOU ; Zefeng KANG ; Yingxin YANG ; Xinquan LIU ; Zhihua SHEN ; Xiaoyi YU ; Jing YAO ; Fengming LIANG ; Fengmei ZHANG ; Jingsheng YU ; Ningli WANG ; Man SONG ; Hongrui SUN ; Xin YAN
Journal of Traditional Chinese Medicine 2024;65(6):587-593
ObjectiveTo observe the effectiveness and safety of the Chinese herbal medicine Mingshi Granules (明视方颗粒) for low myopia in children with heart yang insufficiency. MethodsA multicentre, prospective, double-blind randomised controlled study was conducted, in which 290 children with low myopia from 8 centres were randomly divided into 145 cases in the treatment group and 145 cases in the control group, and the treatment group was given education, dispensing glasses, and Chinese herbal medicine Mingshi Granules, while the control group was given education, dispensing glasses, and granules placebo. Both Mingshi Granules and placebo granules were taken orally, 1 bag each time, twice daily, 4 weeks of oral intake and 2 weeks of rest as 1 course of treatment, a total of 4 courses of treatment (24 weeks). Equivalent spherical lenses, best naked-eye distance visual acuity, ocular axis, corneal curvature K1, adjustment amplitude, traditional Chinese medicine (TCM) symptom scores, calculate the amount of progression of equivalent spherical lenses, were observed at the 12th and the 24th week of treatment, at the 36th week and 48th week of follow-up, resectively, the control rate of myopia progression was evaluated at the 24th week, and safety indexes were observed before treatment. ResultsThe amount of progression of equivalent spherical lenses was lower in the treatment group than in the control group at the 48-week follow-up (P<0.05). The control rate of myopia progression at 24 weeks after treatment in the treatment group was higher (57.60%, 72/125) than that in the control group (44.63%, 54/121) (P<0.05). The best naked-eye distance visual acuity at 36-week follow-up in the treatment group was higher than that in the control group (P<0.05). Equivalent spherical lenses were significantly lower in both groups at all observation time points compared with pre-treatment (P<0.05), and were higher in the treatment group than in the control group at the 48-week follow-up (P<0.05). The ocular axes of both groups were significantly higher at each observation time point after treatment and at follow-up compared with before treatment (P<0.05). The amount of eye axis growth in the treatment group was lower than that in the control group at 24 weeks after treatment and at the 48-week follow-up (P<0.05). Corneal curvature K1 was significantly lower in the treatment group at the 24th week of treatment compared to pre-treatment (P<0.05). The magnitude of adjustment in the treatment group was significantly higher at the 36-week follow-up and at the 48-week follow-up than before treatment (P<0.05). The scores of white/dark complexion, white coating thin pulse, fatigue and total TCM symptom scores of children in both groups at the 12th, 24th, 36th and 48th weeks of follow-up were significantly lower than those before treatment (P<0.05); the scores of blurred vision at the 24th and 36th weeks of follow-up were significantly lower than those before treatment (P<0.05); and the scores of blurred vision in the treatment group at the 48th week of follow-up were signi-ficantly lower than those before treatment (P<0.05). In the treatment group, the score of fatigue was higher than that of the control group at the 36-week follow-up, and the score of blurred vision was lower than that of the control group at the 48-week follow-up (P<0.05). No adverse reactions or obvious abnormalities of the safety indexes were observed of the two groups during the treatment. ConclusionChinese herbal medicine Mingshi Granules showed the effect of controlling the progression of low myopia, improving the best naked eye distance visual acuity, slowing down the growth of the eye axis, improving some of the TCM symptoms, with good safety.
3.Application of the integrated medical and industrial training model in the training of oncology talents from the perspective of new medical sciences
Guogui SUN ; Yanlei GE ; Huaiyong NIE ; Yaning ZHAO ; Haimei BO ; Fengmei XING ; Yating ZHAO ; Hongcan YAN
Clinical Medicine of China 2024;40(1):77-80
The medical-industrial fusion training model combines the knowledge and technology of medical and engineering disciplines in the training of oncology graduate students, which can help accurate diagnosis and treatment of tumors, promote cooperation and innovation in oncology research, as well as promote the cultivation and exchanges of composite and innovative medical talents in oncology, promote the innovation and development of oncology diagnostic and treatment technology, and improve the survival rate and quality of life of oncology patients. This paper discusses the application of medical-industrial fusion training model in the training of o ncology professionals, and explores the new teaching mode of medical-industrial fusion thinking in the cultivation of complex and innovative medical talents in oncology under the background of "new medical science".
4.The role of tofacitinib in early atherosclerosis in mice with systemic lupus erythematosus
Qu CHEN ; Fengmei GE ; Zhao LI ; Qiushuang ZHANG ; Xue WU ; Qi CHEN ; Saiqi LI ; Xuebin WANG ; Xiuqing YAN
Chinese Journal of Rheumatology 2024;28(2):106-112
Objective:To investigate the effect of tofacitinib on early atherosclerosis of patients with systemic lupus erythematosus and explore the possible relationship between lupus nephritis and early atherosclerosis of systemic lupus erythematosus.Methods:Sixteen 8-week-old female MRL/lpr mice with a body weight of 20~25 g were selected and randomly divided into the treatment group and placebo group, with 8 mice in each group. The treatment group diluted tofacitinib by normal saline, and given at a dose of 10 mg·kg -1·d -1, and the placebo group (starch tablets) administered the medication in the same way as the treatment group for a total of 8 weeks. The ELISA method was applied to detect serum anti-dsDNA antibody levels in the two groups of mice. Bradford method protein concentration was used to determine the level of urine protein in mice. Automatic biochemical analyzer was used to detect blood lipids, urea nitrogen, serum creatinine, complement C3, complement C4 levels. Western blotting was used to determine the protein expression levels of monocyte chemoattractant protein-1 (MCP-1), non-receptor protein tyrosine kinase family 1 (JAK1), signal transducer and activator of transcription 1 (STAT1) and signal transducer and activator of transcription 2 (STAT2) in aortic and kidney tissues. After the aortic arch section were prepared, oil red O was used to stain the sections, and the vascular plaque area and intimal thickness were evaluated by ImageJ software. The kidneys were dissected and stained with HE, and the active lesions of lupus nephritis were evaluated using the glomerular activity scoring system. SPSS 23.0 software was used for statistical analysis, in which the between-group comparison was performed using two independent samples t-test, and the correlation analysis was performed using the Spearman method. Results:①The serum anti-dsDNA antibody expression level in the treatment group [(5.2±1.0) U/ml] was lower than that in the placebo group [(6.9±1.2) U/ml], ( Z=-3.07, P=0.008), and the levels of complement C3 and complement C4 were higher than those in the placebo group [(293±10) mg/L vs. (260±19) mg/L, Z=2.72, P=0.017]; (16±6) mg/L vs. (8±9) mg/L, Z=3.78, P=0.006]. There was no significant difference in serum BUN and Scr between the treatment group and the placebo group [(10.6±0.7) mmol/L vs. (11.5±1.1) mmol/L, Z=-1.96, P=0.071; (17±5) μmol/L vs. (22±6) μmol/L, Z=-1.79, P=0.095]. ② Compared with the placebo group, the levels of LDL, TC and TG in the treatment group decreased [(0.83±0.15) mmol/L vs. (1.08±1.05) mmol/L, Z=-3.95, P=0.001; (2.90±0.08) mmol/L vs. (1.81±0.97) mmol/L, Z=-5.17, P=0.001; (1.10±0.08) mmol/L vs. (1.60±0.42) mmol/L, Z=-3.23, P=0.013], and HDL level increased [(2.02±0.99) mmol/L vs. (1.81±0.97) mmol/L, Z=4.42, P=0.001]. ③ Compared with the placebo group, the levels of aortic MCP-1, JAK1, STAT1 and STAT2 in the treatment group were reduced [(0.17±0.30) vs. (0.23±0.05), Z=-3.06, P=0.009; (0.83±0.09) vs. (1.05±0.19), Z=-3.07, P=0.008; (0.77±0.07) vs. (0.94±0.13), Z=-2.83, P=0.014; (0.70±0.07) vs. (0.82±0.09), Z=-2.83, P=0.013], the aortic plaque area and aortic intimal thickness were lower than those in the placebo group [(12±31) μm 2vs. (1 242±1 101) μm 2, Z=-3.12, P=0.016; (63±7) μm vs. (82.10±8.06) μm, Z=-5.13, P<0.001]. ④ Compared with the placebo group, the urine protein level and glomerulonephritis activity score in the treatment group were decreased [(0.08±0.03) mg/mL vs. (0.20±0.11) mg/mL, Z=-3.08, P=0.015; (1.79±0.38) vs. (2.79±0.14) points, Z=-7.08, P<0.001)], and renal tissue MCP-1, JAK1, STAT1.Compared with the placebo group, STAT2 levels were reduced [(0.364±0.040) vs. (0.425±0.021), Z=-3.85, P=0.003; (0.689±0.074) vs. (0.838±0.068), Z=-4.19, P=0.001; (0.508±0.070) vs. (0.646±0.019), Z=-2.85, P=0.015; (0.618±0.062) vs. (0.740±0.101), Z=-2.94, P=0.013. ⑤ The glomerular mobility scores of the two groups were positively correlated with LDL, TCHO, TG, aortic plaque area and aortic intimal thickness ( r=0.51, P=0.043; r=0.79, P<0.001; r=0.64, P=0.008; r=0.82, P<0.001; r=0.74, P=0.001), and negatively correlated with HDL ( r=-0.53, P=0.036). The urine protein levels in the two groups were positively correlated with LDL, TC, TG, aortic plaque area and aortic intimal thickness ( r=0.67, P=0.004; r=0.68, P=0.004; r=0.53, P=0.033; r=0.80, P<0.001; r=0.74, P=0.001), and negatively correlated with HDL ( r=-0.57, P=0.021). Conclusion:The severity of lupus nephritis is correlated with atherosclerosis and dyslipidemia in the early stage of systemic lupus erythematosus. Tofacitinib may reduce the degree of early arteriosclerosis and lupus nephritis in MRL/LPR mice, and reduce blood lipid levels, which may be effective in improving the prognosis of SLE and improving the survival rate of patients.
5.Hemophagocytic syndrome combined with thrombotic microangiopathy: a case report
Yan YANG ; Yuqiu LIU ; Bin WANG ; Changsheng XU ; Fengmei WANG ; Xiaoliang ZHANG ; Bicheng LIU
Chinese Journal of Nephrology 2024;40(7):558-561
The paper reports a rarely case of hemophagocytic syndrome complicated with thrombotic microangiopathy, first presented with fever of unknown origin. A 37-year-old female patient mainly presented with fever, hemolytic anemia, thrombocytopenia, and progressive decline in renal function. After infusion of fresh frozen plasma and high dose of glucocorticoid after double plasma exchange, the patient showed good prognosis, no further fever or hemolysis occurred, recovered platelet and renal function. After acute episode phase, kidney biopsy was performed and acute tubular necrosis was diagnosed. During the follow-up period, the disease did not recur, and the renal function was normal.
6.A case report of vancomycin-induced immune thrombocytopenia
Yuling ZHANG ; Fengmei WANG ; Yan YANG ; Bin WANG ; Xiaoliang ZHANG
Chinese Journal of Nephrology 2024;40(8):667-670
The paper reports a 68-year-old female patient admitted with "recurrent fever for 2 years" with a previous history of chronic kidney disease (stage 5) and receiving maintenance hemodialysis for 2 years. After 15 days of anti-infection treatment with vancomycin, the patient showed a steep drop in peripheral platelet count to <1×10 9/L. Combined with the clinical manifestations and platelet antibody screening, considering vancomycin-induced thrombocytopenia (VIT), vancomycin was immediately stopped, and active plasma exchange was adopted. Finally, the peripheral blood platelet count of the patient returned to normal, supporting the diagnosis of VIT. Vancomycin is widely used in dialysis patients, and the clinicians should be aware of the rare but severe adverse effect of VIT. Once present, vancomycin should be stopped early and individualized treatment should be taken to avoid the risk of massive bleeding or death.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail