1.Correlation between dietary protein intake and type 2 diabetes in adult residents of Chongqing
Jingrong CHEN ; Shuquan LUO ; Yingxu LAI ; Ping FENG ; Dong WANG
Journal of Public Health and Preventive Medicine 2025;36(1):79-82
Objective To investigate the impact of dietary protein intake on the prevalence of type 2 diabetes in adult residents, and to provide a reference for formulating diabetes prevention and control measures. Methods The research was based on cross-sectional survey data from the Nutrition and Health Follow-up Study of Chinese Residents in Chongqing (2021). Energy and nutrient intake was calculated in combination with the Chinese food composition table. Multivariate logistic regression was used to analyze the association between dietary protein and diabetes, and then restricted cubic spline regression (RCS) was used to analyze the dose-response relationship between dietary protein intake and the development of diabetes. Results Among the 1 415 adult residents, dietary intake of total protein, animal protein, and plant protein was 69.69g/d, 26.26g/d, and 43.43g/d, respectively. The ratio of protein to energy supply was 14.31%, and the prevalence of diabetes was 18.02%. Comparing with the residents in the first percentile of total dietary protein intake, the multivariable-adjusted odds ratios of those in the second and third percentile were 1.754 and 2.453 respectively. Comparing the residents in the third percentile with those in the first percentile, the multivariable-adjusted odds ratios of diabetes were 1.592 for protein energy supply ratio, and 1.558 for animal protein intake. Conclusion High protein intake, high protein energy supply ratio and high animal protein intake may increase the risk of diabetes, and different types of protein may have different effects on diabetes.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
4.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
5.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
6.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
7.RNF115 deficiency upregulates autophagy and inhibits hepatocellular carcinoma growth.
Zhaohui GU ; Jinqiu FENG ; Shufang YE ; Tao LI ; Yaxin LOU ; Pengli GUO ; Ping LV ; Zongming ZHANG ; Bin ZHU ; Yingyu CHEN
Chinese Medical Journal 2025;138(6):754-756
8.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
9.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
10.Zhiwei Fuwei Pills regulate miRNA-21/Bcl-2 pathway to improve mitochondrial apoptosis in rats with precancerous lesions of gastric cancer.
Jiao-Jiao ZUO ; Rui-Ping SONG ; Peng-Cheng DOU ; Xin-Yi CHEN ; Zhuang-Zhuang FENG ; Jin SHU
China Journal of Chinese Materia Medica 2025;50(15):4342-4351
This study aimed to investigate the effects of Zhiwei Fuwei Pills on mitochondrial apoptosis in the rat model of precancerous lesions of gastric cancer(PLGC) based on the microRNA-21(miRNA-21)/B-cell lymphoma-2(Bcl-2) signaling pathway. Eighty-five 5-week-old male SPF-grade SD rats were selected, of which 75 were fed with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) for multifactorial modeling, and the PLGC model was established after 26 weeks. The rats were randomly grouped as follows: model, folic acid(0.002 g·kg~(-1)), low-dose(0.42 g·kg~(-1)) Zhiwei Fuwei Pills, medium-dose(0.84 g·kg~(-1)) Zhiwei Fuwei Pills, and high-dose(1.67 g·kg~(-1)) Zhiwei Fuwei Pills, with 15 rats in each group. Additionally, 10 rats were assigned to a blank group and administrated with an equivalent volume of normal saline by gavage. After four weeks of continuous drug administration, the gastric mucosal tissue was collected. Hematoxylin-eosin(HE) staining was performed to reveal the pathological changes in the gastric mucosa. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) was employed to detect apoptosis in gastric mucosal epithelial cells. RT-PCR was adopted to determine the mRNA levels of miRNA-21, phosphatase and tensin homolog(PTEN), Bcl-2, Bcl-2-associated X protein(Bax), and cysteinyl aspartate-specific protease 3(caspase-3). Western blot was employed to determine the protein levels of PTEN, Bcl-2, Bax, and caspase-3. Immunohistochemistry(IHC) was used to detect the positive expression of PTEN, Bcl-2, and Bax in the gastric mucosal tissue. Transmission electron microscopy(TEM) was employed to observe the morphological and structural changes in mitochondria. The results showed that compared with model group, the drug administration groups showed alleviated pathological changes, with increased apoptotic cells, down-regulated mRNA levels of miRNA-21 and Bcl-2, up-regulated mRNA and protein levels of PTEN, Bax, and caspase-3, and down-regulated protein level of Bcl-2. In addition, the drug administration groups exhibited mitochondrial swelling and rupture and reduction of cristae, which indicated mitochondrial apoptosis. These findings suggest that Zhiwei Fuwei Pills can effectively improve mitochondrial apoptosis in PLGC cells by regulating the miRNA-21/Bcl-2 signaling pathway.
Animals
;
MicroRNAs/metabolism*
;
Male
;
Apoptosis/drug effects*
;
Stomach Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitochondria/genetics*
;
Signal Transduction/drug effects*
;
Precancerous Conditions/drug therapy*
;
Humans
;
PTEN Phosphohydrolase/genetics*


Result Analysis
Print
Save
E-mail