1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Safety and efficacy of Angong Niuhuang Pills in patients with moderate-to-severe acute ischemic stroke (ANGONG TRIAL): A randomized double-blind placebo-controlled pilot clinical trial.
Shengde LI ; Anxin WANG ; Lin SHI ; Qin LIU ; Xiaoling GUO ; Kun LIU ; Xiaoli WANG ; Jie LI ; Jianming ZHU ; Qiuyi WU ; Qingcheng YANG ; Xianbo ZHUANG ; Hui YOU ; Feng FENG ; Yishan LUO ; Huiling LI ; Jun NI ; Bin PENG
Chinese Medical Journal 2025;138(5):579-588
BACKGROUND:
Preclinical studies have indicated that Angong Niuhuang Pills (ANP) reduce cerebral infarct and edema volumes. This study aimed to investigate whether ANP safely reduces cerebral infarct and edema volumes in patients with moderate to severe acute ischemic stroke.
METHODS:
This randomized, double-blind, placebo-controlled pilot trial included patients with acute ischemic stroke with National Institutes of Health Stroke Scale (NIHSS) scores ranging from 10 to 20 in 17 centers in China between April 2021 and July 2022. Patients were allocated within 36 h after onset via block randomization to receive ANP or placebo (3 g/day for 5 days). The primary outcomes were changes in cerebral infarct and edema volumes after 14 days of treatment. The primary safety outcome was severe adverse events (SAEs) for 90 days.
RESULTS:
There were 57 and 60 patients finally included in the ANP and placebo groups, respectively for modified intention-to-treat analysis. The median age was 66.0 years, and the median NIHSS score at baseline was 12.0. The changes in cerebral infarct volume at day 14 were 0.3 mL and 0.4 mL in the ANP and placebo groups, respectively (median difference: -7.1 mL; interquartile range [IQR]: -18.3 to 2.3 mL, P = 0.30). The changes in cerebral edema volume of the ANP and placebo groups on day 14 were 11.4 mL and 4.0 mL, respectively ( median difference: 3.0 mL, IQR: -1.3 to 9.9 mL, P = 0.15). The rates of SAE within 90 days were similar in the ANP (3/57, 5%) and placebo (7/60, 12%) groups ( P = 0.36). Changes in serum mercury and arsenic concentrations were comparable. In patients with large artery atherosclerosis, ANP reduced the cerebral infarct volume at 14 days (median difference: -12.3 mL; IQR: -27.7 to -0.3 mL, P = 0.03).
CONCLUSIONS:
ANP showed a similar safety profile to placebo and non-significant tendency to reduce cerebral infarct volume in patients with moderate-to-severe stroke. Further studies are warranted to assess the efficacy of ANP in reducing cerebral infarcts and improving clinical prognosis.
TRAIL REGISTRATION
Clinicaltrials.gov , No. NCT04475328.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Double-Blind Method
;
Drugs, Chinese Herbal/adverse effects*
;
Ischemic Stroke/drug therapy*
;
Pilot Projects
;
Stroke/drug therapy*
;
Treatment Outcome
3.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
4.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
5.Biomechanical finite element analysis of American Chiropractic intervention on the third lumbar transverse process syndrome based on imaging.
Ling-Feng ZHU ; Hai-Jie YU ; Hai-Fen YING ; Ben-Bao CHEN ; Xiao-Chun XIONG ; Li-Jiang LYU
China Journal of Orthopaedics and Traumatology 2025;38(4):403-410
OBJECTIVE:
To explore the displacement and pressure distribution of American Chiropractic in a model of third lumbar syndrome based on finite element analysis.
METHODS:
On March 2021, CT and MRI images of a 23-year-old male patient with right third lumbar syndrome were selected. A 3D stl model was established using Mimics and CATIA, and the data was imported into Hypermesh, Abaqus & ANSYS. The elastic modulus and Poisson's ratio of the affected side material were adjusted to establish its finite element model. Based on the comparison of the operating positions and routines of the American Chiropractic and the lumbar spine oblique pull method, but with differences in the focus and direction of force, the experimental group simulated the American Chiropractic with the healthy side (left side) lying position of the model. The upper endplate of L3 and the lower part below L3 twisted accordingly with the body position, we applied a vertical forward thrust of 246 N to the plane formed by the L4, L5 spinous processes and L4 upper articular processes;The control group simulates the oblique pull method of the lumbar spine, requiring the model to lie on the healthy side (left side), fix the upper endplate of L4, and perform a horizontal rotation along the longitudinal axis of L3 vertebral body. At this time, the contact force in the upward direction is also set to 246 N. Compare the displacement and stress differences between the L1-L5 intervertebral bodies, intervertebral discs, articular processes, and transverse process muscles in two intervention models.
RESULTS:
① Under safe load conditions, a test force of 246 N was applied to the model, and the maximum vertebral displacement occurred on the right side of the L3 vertebral body (1.197 mm) after manual intervention in the control group. The vertebral displacement between L1-L5 induced by manual intervention in the experimental group was smaller than that of the control group's manual intervention (P<0.05). ② The maximum vertebral body stress occurred on the right side of the L3 vertebral body after manual intervention in the control group (98.425 MPa). The stress on each vertebral body formed by the experimental group's manual intervention was lower than that of the control group's manual intervention (P<0.05). ③The maximum intervertebral disc stress occurred on the right side of the L2,3 intervertebral disc (6.282 MPa) after manual intervention in the control group. ④ The maximum joint process stress occurred on the right side of the L4 upper joint process after manual intervention in the experimental group (1.587 MPa). The joint process stress on the left side below L1 and the left side above and below L2 induced by manual intervention in the experimental group was lower than that of the control group (P<0.05). ⑤The maximum stress on the intertransverse process muscle was observed at the right lateral L3 process end (31.960 MPa) of L3,4 in the control group after manual intervention. The stress on the L2,3 and L4,5 segments of the intertransverse process muscle induced by manual intervention in the experimental group was lower than that of the control group's manual intervention (P<0.05).
CONCLUSION
The mechanical feedback of the L1-L5 vertebral body, the lower left side of the articular process L1, the upper and lower left side of the articular process L2, and the L2,3 and L4,5 segments of the transverse process muscle in the model indicates that performing American Chiropractic for the treatment of third lumbar transverse process syndrome can accurately hit the target pain point and allow the patient's tissue to form a low stress and low tension state after manual operation, thereby reducing the possibility of tissue damage caused by hypertonia after intervertebral joint movement, making it relatively safe. The application of American Chiropractic will be a new supplement to the traditional treatment plan for third lumbar transverse process syndrome.
Humans
;
Finite Element Analysis
;
Male
;
Lumbar Vertebrae/physiopathology*
;
Biomechanical Phenomena
;
Young Adult
;
Manipulation, Chiropractic
;
Adult
;
Tomography, X-Ray Computed
;
Magnetic Resonance Imaging
6.Study on the efficacy of automatic-controlled pressure cupping for lumbar disc herniation.
Bo-Chen PENG ; Min-Shan FENG ; Li LI ; Gui-Ju REN ; Yi-Zhen YUAN ; Li-Jie CHANG ; Shu-Ying REN ; Liu ZENG ; Guang-Wei LIU ; Li-Guo ZHU ; Na YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1133-1138
OBJECTIVE:
To observe the clinical efficacy and safety of automatic pressure-controlled pressure cupping in patients with lumbar disc herniation, and compare it with traditional cupping.
METHODS:
A total of 100 patients diagnosed with lumbar disc herniation from January 2022 to August 2024 were selected and divided into two groups:the automatic pressure-controlled pressure cupping group (controlled pressure cupping group) and the traditional cupping group (control group), 50 cases in each group. In the controlled pressure cupping group, there were 18 males and 32 females, with an age of (51.98±12.69) years;in the control group, there were 16 males and 34 females, with an age of (51.32±12.05) years. The visual analogue scale(VAS), comfort score, and lumbar range of motion were observed before treatment and after the 1st, 3rd, and 7th treatments to evaluate the efficacy and safety.
RESULTS:
All patients completed the treatment intervention, with complete follow-up data collected. No adverse reactions or complications occurred during treatment and follow-up. After the 3rd treatment, the VAS score of the controlled pressure cupping group was (2.38±0.49), which was lower than that of the control group (2.94±0.68), with a statistically significant difference (P<0.001). In the controlled pressure cupping group, the VAS scores after the 1st, 3rd, and 7th treatments were significantly better than those before treatment (P=0.026);in the control group, the VAS scores after the 3rd and 7th treatments were better than those before treatment, but the difference was not statistically significant(P=0.182). Repeated-measures analysis of variance (ANOVA) on VAS scores at different time points in both groups showed that there were statistically significant differences in inter-group, time, and interaction effects (P<0.05). After the 1st treatment, in the controlled pressure cupping group, 0 patients felt comfortable, 42 patients (84%) felt mild discomfort, and 8 patients (16%) felt moderate discomfort;in the control group, 0 patients felt comfortable, 28 patients (56%) felt mild discomfort, and 22 patients(44%) felt moderate discomfort;the difference between the two groups was statistically significant(P=0.005). After the 3rd treatment, in the controlled pressure cupping group, 30 patients(60%) felt comfortable, 20 patients (40%) felt mild discomfort, and 0 patients felt moderate discomfort; in the control group, 9 patients (18%) felt comfortable, 41 patients (82%) felt mild discomfort, and 0 patients felt moderate discomfort;the difference between the two groups was statistically significant(P<0.001). There was no statistically significant difference in comfort between the two groups after the 7th treatment(P>0.001). There was no statistically significant difference in lumbar range of motion between the two groups before and after treatment(P>0.05);compared with before treatment, the lumbar range of motion of both groups after treatment was significantly improved, with statistically significant differences (P<0.001).
CONCLUSION
Automatic pressure-controlled pressure cupping can effectively relieve symptoms in patients with lumbar disc herniation, with excellent safety.
Humans
;
Female
;
Male
;
Intervertebral Disc Displacement/physiopathology*
;
Middle Aged
;
Adult
;
Lumbar Vertebrae/physiopathology*
;
Cupping Therapy/methods*
;
Pressure
;
Aged
;
Treatment Outcome
7.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China
8.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
9.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
10.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy

Result Analysis
Print
Save
E-mail