1.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
2.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
3.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
4.Pathogenesis and treatment of "inflammation cancer transformation" of ulcerative colitis based on "Kenang" theory.
Jia-Kang XIE ; Xiao-Ning XU ; Feng-Ting AI ; Shao-Xi LI ; Yun AN ; Xuan GONG ; Yong CAO
China Journal of Chinese Materia Medica 2025;50(8):2298-2304
Ulcerative colitis(UC) is a recurrent, chronic, nonspecific inflammatory bowel disease. The longer the course of the disease, the higher the risk of cancerization. In recent years, the incidence and mortality rates of colon cancer in China have been increasing year by year, seriously threatening the life and health of patients. Therefore, studying the mechanism of "inflammation cancer transformation" in UC and conducting early intervention is crucial. The "Kenang" theory is an important component of traditional Chinese medicine(TCM) theory of phlegm and blood stasis. It is based on the coexistence of phlegm and blood stasis in the body and deeply explores the pathogenic syndromes and characteristics of phlegm and blood stasis. Kenang is a pathological product formed when long-term Qi stagnation leads to the internal formation of phlegm and blood stasis, which is hidden deep within the body. It is characterized by being hidden, progressive, and difficult to treat. The etiology and pathogenesis of "inflammation cancer transformation" in UC are consistent with the connotation of the "Kenang" theory. The internal condition for the development of UC "inflammation cancer transformation" is the deficiency of healthy Qi, with Qi stagnation being the key pathological mechanism. Phlegm and blood stasis are the main pathogenic factors. Phlegm and blood stasis accumulate in the body over time and can produce cancer toxins. Due to the depletion of healthy Qi and a weakened constitution, the body is unable to limit the proliferation and invasion of cancer toxins, eventually leading to cancer transformation in UC. In clinical treatment, the focus should be on removing phlegm and blood stasis, with syndrome differentiation and treatment based on three basic principles: supporting healthy Qi to strengthen the body's foundation, resolving phlegm and blood stasis to break up the Kenang, and regulating Qi and blood to smooth the flow of energy and resolve stagnation. This approach helps to dismantle the Kenang, delay, block, or even reverse the cancerization process of UC, reduce the risk of "inflammation cancer transformation", improve the patient's quality of life, and provide new perspectives and strategies for early intervention in the development of colon cancer.
Humans
;
Colitis, Ulcerative/immunology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Cell Transformation, Neoplastic
5.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
6.Quality evaluation of Bidentis Herba based on HPLC fingerprint, multi-component content determination, and chemometrics.
Guo-Li SHI ; Xin-Feng WANG ; Wei-Qun LI ; Jian-Wei FAN ; Yong-Xia GUAN
China Journal of Chinese Materia Medica 2025;50(14):3944-3950
This study established the HPLC fingerprints and a multi-component content determination method for Bidens pilosa var. radiata and B. pilosa and conducted comprehensive evaluation by integrating fingerprint similarity comparison, cluster analysis(CA), and principal component analysis(PCA), aiming to provide a reference for the establishment of quality standards for Bidentis Herba. HPLC was launched on an Agilent Poroshell 120 EC-C_(18) chromatographic column(4.6 mm×250 mm, 4 μm) by gradient elution with a mobile phase of 0.1% aqueous phosphoric acid-acetonitrile at a flow rate of 0.7 mL·min~(-1), detection wavelength of 270 nm, column temperature of 25 ℃, and an injection volume of 5 μL. The fingerprint similarity of 20 batches of Bidentis Herba ranged from 0.775 to 0.979. A total of 20 common peaks were identified, and seven components were confirmed through comparison with reference substances: neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, rutin, and hyperoside. These seven components exhibited good linearity within the ranges of 3.4-67.4, 33.0-660.3, 26.6-531.2, 3.5-70.5, 6.2-124.9, 2.4-48.3, and 4.6-91.5 μg·mL~(-1), respectively, with correlation coefficients(r) greater than 0.999. The average recovery rates ranged from 96.47% to 104.6%. CA and PCA classified the 20 batches of Bidentis Herba into two categories. PCA yielded two principal components, with a cumulative variance contribution rate of 80.557%. The established HPLC fingerprints and multi-component content determination method are simple and accurate, providing a scientific basis for the quality control and quality standard formulation of Bidentis Herba.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Chemometrics/methods*
;
Bidens/chemistry*
;
Principal Component Analysis
7.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
8.Quality evaluation of Bidentis Herba derived from different original plants based on HPLC fingerprints, characteristic chromatograms, multi-component content determination combined with chemical pattern recognition.
Guo-Li SHI ; Yun MA ; Feng-Xia SHEN ; Han-Wen DU ; Cong-Min LIU ; Rui-Xia WEI ; Yan-Fang LI ; Jian-Wei FAN ; Yong-Xia GUAN
China Journal of Chinese Materia Medica 2025;50(15):4284-4292
This study established the HPLC fingerprints, characteristic chromatograms, and a multi-component content determination method for Bidens bipinnata and B. biternata. The chemical pattern recognition analysis was then employed to clarify the characteristic indexes of quality differences between the two original plants of Bidentis Herba, providing a reference for establishing the quality standards of Bidentis Herba. HPLC was launched on an Agilent Poroshell 120 EC-C_(18) chromatographic column(4.6 mm×250 mm, 4 μm) by gradient elution with a mobile phase of 0.1% aqueous phosphoric acid-acetonitrile at a flow rate of 0.7 mL·min~(-1), detection wavelength of 270 nm, column temperature of 25 ℃, and an injection volume of 5 μL. The similarity between the fingerprints of 18 batches of Bidentis Herba samples and the common pattern(R) ranged from 0.572 to 0.933. A total of 23 chromatographic peaks were calibrated. Through comparison with the reference substances, six components(neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, rutin, and hyperoside) were identified and subjected to quantitative analysis. The characteristic fingerprints of B. bipinnata and B. biternata were calibrated with 20 and 17 characteristic peaks, respectively. Among them, peaks 8, 9, 22, and 23 were the characteristic peaks of B. bipinnata, and peak 7 was the characteristic peak of B. biternata, which can be used to distinguish the two original plants of Bidentis Herba. The relative standard deviation of the content of the above-mentioned six components ranged from 36% to 123%. The cluster analysis, principal component analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) classified the 18 batches of Bidentis Herba samples into two categories. Additionally, through the analysis of variable importance in projection(VIP) under OPLS-DA, three characteristic indexes, rutin, isochlorogenic acid A, and isochlorogenic acid B, were identified. The analytical method established in this study can comprehensively evaluate the consistency of Bidentis Herba samples derived from different original plants, specifically identify the differential components between them, and effectively distinguish the two original plants of Bidentis Herba, providing a basis for the differentiation between different original plants and the quality control of Bidentis Herba.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Bidens/chemistry*
9.Care of the bedridden patient.
Xuan Yong LEE ; Jeffrey JIANG ; Li Feng TAN
Singapore medical journal 2025;66(4):215-220
10.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail