1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
3.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
4.A convenient research strategy for functional verification of epigenetic regulators during spermatogenesis.
Shan LI ; Ying YUAN ; Ke-Yu ZHANG ; Yi-Dan GUO ; Lu-Tong WANG ; Xiao-Yuan ZHANG ; Shu ZHANG ; Qi YAN ; Rong ZHANG ; Jie CHEN ; Feng-Tang YANG ; Jing-Rui LI
Asian Journal of Andrology 2025;27(2):261-267
Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.
Spermatogenesis/physiology*
;
Animals
;
Male
;
Mice
;
Epigenesis, Genetic
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Histones/metabolism*
;
RNA Interference
;
Testis/metabolism*
;
Methylation
;
Mice, Knockout
;
Histone Demethylases
5.Clinical features and prognosis of children with influenza-associated encephalopathy: an analysis of 23 cases.
Dan WANG ; Hu GUO ; Chun-Feng WU ; Gang ZHANG ; Min XU
Chinese Journal of Contemporary Pediatrics 2025;27(7):829-833
OBJECTIVES:
To study the clinical and imaging features of children with influenza-associated encephalopathy (IAE), and to investigate the influencing factors for prognosis.
METHODS:
A retrospective analysis was conducted on the medical data (clinical data, laboratory examinations, imaging data, and prognosis) of 23 children with IAE who were diagnosed and treated in Children's Hospital of Nanjing Medical University from May 2022 to April 2023.
RESULTS:
Among the 23 patients, 18 (78%) had influenza A and 5 (22%) had influenza B. All patients had fever and encephalopathy, and 20 patients (87%) had seizures, while 11 patients (48%) had persistent convulsions. There were 10 patients (43%) with an increase in alanine aminotransferase, 14 (61%) with an increase in aspartate aminotransferase, and 18 (78%) with an increase in lactate dehydrogenase. Abnormal imaging findings were observed in 20 patients (87%), among whom 10 (43%) had acute necrotizing encephalopathy. All 23 patients received peramivir or oseltamivir. Of all patients, 12 (52%) achieved complete recovery, 5 (22%) had varying degrees of neurological dysfunction, and 6 (26%) died. Compared with the good prognosis group, the poor prognosis group had significantly higher levels of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase (P<0.05).
CONCLUSIONS
Fever and convulsions are the most common symptoms of children with IAE, and acute necrotizing encephalopathy is the most common clinical imaging syndrome. Increases in alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase have a certain value in predicting poor prognosis.
Humans
;
Influenza, Human/complications*
;
Male
;
Prognosis
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Infant
;
Child
;
Brain Diseases/etiology*
6.Effect of TBL1XR1 Mutation on Cell Biological Characteristics of Diffuse Large B-Cell Lymphoma.
Hong-Ming FAN ; Le-Min HONG ; Chun-Qun HUANG ; Jin-Feng LU ; Hong-Hui XU ; Jie CHEN ; Hong-Ming HUANG ; Xin-Feng WANG ; Dan GUO
Journal of Experimental Hematology 2025;33(2):423-430
OBJECTIVE:
To investigate the effect of TBL1XR1 mutation on cell biological characteristics of diffuse large B-cell lymphoma (DLBCL).
METHODS:
The TBL1XR1 overexpression vector was constructed and DNA sequencing was performed to determine the mutation status. The effect of TBL1XR1 mutation on apoptosis of DLBCL cell line was detected by flow cytometry and TUNEL fluorescence assay; CCK-8 assay was used to detect the effect of TBL1XR1 mutation on cell proliferation; Transwell assay was used to detect the effect of TBL1XR1 mutation on cell migration and invasion; Western blot was used to detect the effect of TBL1XR1 mutation on the expression level of epithelial-mesenchymal transition (EMT) related proteins.
RESULTS:
The TBL1XR1 overexpression plasmid was successfully constructed. The in vitro experimental results showed that TBL1XR1 mutation had no significant effect on apoptosis of DLBCL cells. Compared with the control group, TBL1XR1 mutation enhanced cell proliferation, migration and invasion of DLBCL cells. TBL1XR1 gene mutation significantly increased the expression of N-cadherin protein, while the expression of E-cadherin protein decreased.
CONCLUSION
TBL1XR1 mutation plays a role in promoting tumor cell proliferation, migration and invasion in DLBCL. TBL1XR1 could be considered as a potential target for DLBCL therapy in future research.
Humans
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Proliferation
;
Mutation
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Apoptosis
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Cell Movement
;
Repressor Proteins/genetics*
;
Nuclear Proteins/genetics*
;
Cadherins/metabolism*
7.Genetic Differences of Thalassemia Gene Among Ethnic Groups in Hechi, Guangxi.
Man-Ting SONG ; Feng-Yan WANG ; Dan LAN ; Gao CHEN ; Shuai WEI ; Li-Mang GUO
Journal of Experimental Hematology 2025;33(4):1098-1103
OBJECTIVE:
To retrospectively analyze the genetic differences of thalassemia gene mutations among ethnic groups in Hechi, Guangxi.
METHODS:
A total of 15 595 whole blood samples of residents of Hechi from January 1, 2020 to June 30, 2023 were screened for thalassemia, and the Gap-PCR method and RDB-PCR method were used to perform genetic testing on the positive samples. Gene sequencing was performed on the samples with positive screening results but negative genotyping results.
RESULTS:
Among the 15 595 samples, 10 501 cases were screened positively, and 8 506 cases were thalassemia gene carriers among the positive samples, with a positive coincidence rate of 81.00%. Among them, there were 5 374 cases of α-thalassemia, 2 531 cases of β-thalassemia, and 601 cases of α+β compound thalassemia. A total of 13 mutant types were detected in α-thalassemia, including --SEA (48.57%), -α 3.7 (31.31%), α CS (8.57%) and -α 4.2 (8.07%). A total of 17 mutant types were detected in β-thalassemia, mainly CD17 (48.27%) and CD41-42 (41.24%). The thalassemia gene carriers were mainly from the Zhuang (6 106 cases), Han (969 cases), Yao (793 cases), Mulam (275 cases), and Maonan (228 cases) ethnic groups. The comparison of constituent ratios within the above five ethnic groups demonstrated that there were differences in the proportions of -- SEA, -α 3.7, α CS , and -α 4.2 among the Zhuang, Han, and Yao ethnic groups (P < 0.005). The proportion of α CS in the Mulam ethnic group was not significantly different from -α 3.7 and -α 4.2. The proportions of -- SEA, -α3.7, and α CS in the Maonan ethnic group were not significantly different. There were no significant differences in the proportion of CD17 and CD41-42 among the Han, Yao, Mulam and Maonan ethnic groups. The proportion of --SEA was the highest in the Mulam ethnic group (56.68%), which was statistically different from 35.92% in the Maonan ethnic group. The proportion of -α 3.7 was the highest in the Zhuang ethnic group (33.25%), and the difference was statistically significant compared to the Mulam ethnic group which had the lowest proportion (18.72%). The proportion of α CS was the highest in the Maonan ethnic group (27.46%), and the differences were statistically significant compared with other ethnic groups. The proportions of CD17 in the Zhuang and Maonan ethnic groups (50.79%, 55.68%) were higher than those in the Han (39.12%), Yao (39.63%) and Mulam (30.00%), and the differences were statistically significant. There was no significant difference in the proportion of CD41-42 among the above five ethnic groups.
CONCLUSIONS
The mutation type and distribution differences of genes causing thalassemia among main ethnic groups in the minority inhabited areas of Hechi, Guangxi, show the characteristics of ethnic differentiation. The result is helpful to develop a special prevention and control plan for thalassemia in line with the population distribution characteristics, and provide reference for revealing the genetic background and geographical distribution of thalassemia in this area.
Humans
;
China
;
beta-Thalassemia/genetics*
;
Ethnicity/genetics*
;
alpha-Thalassemia/genetics*
;
Mutation
;
Genotype
;
Retrospective Studies
;
Asian People/genetics*
;
Thalassemia/genetics*
;
Male
8.Analysis of Gene Mutations Distribution and Enzyme Activity of G6PD Deficiency in Newborns in Guilin Region.
Dong-Mei YANG ; Guang-Li WANG ; Dong-Lang YU ; Dan ZENG ; Hai-Qing ZHENG ; Wen-Jun TANG ; Qiao FENG ; Kai LI ; Chun-Jiang ZHU
Journal of Experimental Hematology 2025;33(5):1405-1411
OBJECTIVE:
To analyze the distribution characteristics of glucose-6-phosphate-dehydrogenase (G6PD) mutations and their enzyme activity in newborns patients with G6PD deficiency in Guilin region.
METHODS:
From July 2022 to July 2024, umbilical cord blood samples from 4 554 newborns in Guilin were analyzed for G6PD mutations using fluorescence PCR melting curve analysis. Enzyme activity was detected in 4 467 cases using the rate assay.
RESULTS:
Among 4 467 newborns who underwent G6PD activity testing, 162 newborns (3.63%) were identified as G6PD-deficient, including 142 males (6.04%) and 20 females (0.94%), the prevalence of G6PD deficiency was significantly higher in males than in females (P < 0.001). Genetic analysis of 4 554 newborns detected G6PD mutations in 410 cases (9%), including 171 males (7.13%) and 239 females (11.09%), with a significantly higher mutation detection rate in females than in males (P < 0.001). A total of nine single mutations and four compound heterozygous mutations were identified. The most common mutations were c.1388G>A (33.66%), c.1376G>T (23.66%) and c.95A>G (16.34%). Among newborns who underwent both enzyme activity and genetic mutation testing, males with G6PD mutations had significantly lower enzyme activity than that of females with G6PD mutations(P < 0.001). Specifically, among newborns carrying the mutations c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T or c.871G>A, males consistently exhibited lower enzymatic activity than females with the same mutations (P < 0.001). Furthermore, in male G6PD-deficient newborns, the enzyme activity levels in those carrying c.1388G>A, c.1376G>T, c.95A>G, c.1024C>T, or c.871G>A were lower than those in both the control group and the c.519C>T group (P < 0.05).
CONCLUSION
This study provides a comprehensive profile of G6PD deficiency incidence and mutation spectrum in the Guilin region. By analyzing enzyme activity and genetic mutation results, this study provides insights into potential intervention strategies and personalized management approaches for the prevention and treatment of neonatal G6PD deficiency in the region.
Humans
;
Infant, Newborn
;
Glucosephosphate Dehydrogenase Deficiency/epidemiology*
;
Glucosephosphate Dehydrogenase/genetics*
;
Female
;
Male
;
Mutation
;
China/epidemiology*
9.Spermidine inactivates proteasome activity and enhances ferroptosis in prostate cancer.
Dan FENG ; Jian ZHANG ; Huanmin NIU ; Xiaoxue ZHENG ; Mengqi JIA ; Qiqi LU ; Jing WANG ; Wenxue GUO ; Qi SUN ; Huiqing YUAN ; Hongxiang LOU
Acta Pharmaceutica Sinica B 2025;15(4):2095-2113
The elevated polyamines, amine-rich molecules with diverse functions in pathophysiology processes, are implicated in contributing to tumorigenesis and progression. Whether and how they affect the efficacy of chemotherapy is incompletely understood. Our screening assays reveal that the supplement with a low dose of spermidine (Spd), one of the polyamines, enhances ferroptosis in prostate cancer cells as evidenced by increased lipid peroxidation and intracellular Fe2+ levels in vitro. Combination treatment with Spd and a low dose of ferroptosis inducer erastin synergistically augments anti-tumor efficacy with undetectable toxicity in mice. Analysis of RNA-seq data indicates that heme oxygenase 1 (HMOX1), an enzyme that catalyzes the cleavage of heme to release Fe2+, is significantly upregulated in response to Spd and erastin cotreatment. Spd mediated the hypusine modification of the eukaryotic initiation factor 5A (EIF5A) promotes the translation of the nuclear factor erythroid 2-related factor 2 (NRF2), subsequently leading to elevation of HMOX1. Moreover, Spd and erastin significantly inhibit proteasome activity which results in a decrease in proteasomal degradation of NRF2, although many proteasome-related genes are induced either by Spd or Spd plus erastin. Thus, in addition to its pro-oncogenic activity, the supplement of Spd improves antitumor activity in combination with ferroptosis inducers and offers an optional approach to cancer treatment.
10.Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Qiu WANG ; Bin WAN ; Yao FENG ; Zimeng YANG ; Dan LI ; Fan LIU ; Ya GAO ; Chang LI ; Yanhua LIU ; Yongbing SUN ; Zhonggui HE ; Cong LUO ; Jin SUN ; Qikun JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2867-2883
Tailored lipid nanoparticles (LNPs)-mediated small interfering RNA (siRNA) nanomedicines show promise in treating liver disease, such as acute liver injury (ALI) and non-alcoholic steatohepatitis (NASH). However, constructing LNPs that address biosafety concerns, ensure efficient delivery, and target specific hepatic subcellular fractions has been challenging. To evade above obstacles, we develop three novel self-degradable "gemini-like" ionizable lipids (SS-MA, SS-DC, SS-MH) by incorporating disulfide bonds and modifying the length of ester bond and tertiary amino head. Our findings reveal that the disulfide-bond-bridged LNPs exhibit reduction-responsive drug release, improving both biosafety and siRNA delivery efficiency. Furthermore, the distance of ester bond and tertiary amino head significantly influences the LNPs' pK a, thereby affecting endosomal escape, hemolytic efficiency, absorption capacity of ApoE, uptake efficiency of hepatocytes and liver accumulation. We also develop the modified-mannose LNPs (M-LNP) to target liver macrophages specifically. The optimized M-MH_LNP@TNFα exhibits potential in preventing ALI by decreasing tumor necrosis factor α (TNFα) levels in the macrophages, while MH_LNP@DGAT2 could treat NASH by selectively degrading diacylglycerol O-acyltransferase 2 (DGAT2) in the hepatocytes. Our findings provide new insights into developing novel highly effective and low-toxic "gemini-like" ionizable lipids for constructing LNPs, potentially achieving more effective treatment for hepatic diseases.

Result Analysis
Print
Save
E-mail