1.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.Mechanism of Gegen Qinliantang in Regulating Microglia Polarization to Improve Diabetic Cognitive Impairment
Hui FENG ; Chunxiang ZHOU ; Tianyi REN ; Weiwei TAO ; Yun LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):1-10
ObjectiveTo explore the protective effect and underlying mechanism of Gegen Qinliantang on cognitive function in db/db mice with diabetic cognitive impairment (DCI). MethodsThirty-two 8-week-old male db/db mice were randomly assigned to the model group, dapagliflozin group (1.0 mg·kg-1·d-1), low-dose Gegen Qinliantang group (6.24 g·kg-1·d-1), and high-dose Gegen Qinliantang group (24.96 g·kg-1·d-1). Eight db/m mice served as the normal group. All mice were administered the corresponding treatment once daily by gavage for 10 consecutive weeks. Body weight and fasting blood glucose (FBG) were dynamically monitored. The Morris water maze test was used to evaluate cognitive function. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe pathological changes in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in hippocampal tissue. Immunofluorescence double staining was used to detect the co-expression of M1 microglial marker CD16/32 and ionized calcium-binding adapter molecule 1 (IBA1) in the hippocampus. Western blot analysis was performed to detect the protein expression of postsynaptic density protein 95 (PSD-95), synapsin (SYN), nuclear factor-κB p65 (NF-κB p65), and phosphorylated NF-κB p65 (p-NF-κB p65) in the hippocampus. ResultsCompared with the normal group, the model group showed significantly increased body weight and FBG levels (P<0.01), significantly prolonged escape latency and reduced platform crossings in the Morris water maze test (P<0.01), disordered arrangement of hippocampal neurons, nuclear pyknosis, increased neuronal necrosis, reduced Nissl bodies, decreased expression of synaptic proteins PSD-95 and SYN (P<0.01), increased CD16/32+ /IBA1+ positive rate, elevated levels of TNF-α and IL-1β, and an increased p-NF-κB p65/NF-κB p65 ratio (P<0.01). Compared with the model group, the dapagliflozin group exhibited significantly reduced FBG levels at weeks 5 and 10 (P<0.05, P<0.01) and increased body weight. The high-dose Gegen Qinliantang group showed significantly reduced FBG at week 10 (P<0.05). Escape latency was significantly reduced on days 3 and 5 of the water maze test in the dapagliflozin group and on day 5 in the high-dose Gegen Qinliantang group (P<0.05). Platform crossings were significantly increased in both the dapagliflozin group and the high-dose Gegen Qinliantang group (P<0.05). Hippocampal pathological damage was alleviated to varying degrees in the dapagliflozin group and the low- and high-dose Gegen Qinliantang groups, with significantly increased expression of PSD-95 and SYN (P<0.01). Further studies revealed that both low- and high-dose Gegen Qinliantang reduced hippocampal IL-1β levels and the CD16/32+/IBA1+ positive rate of microglia, while the high-dose group also significantly reduced hippocampal TNF-α levels and the p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionGegen Qinliantang can improve hyperglycemia, cognitive dysfunction, and synaptic damage in DCI, inhibit M1 polarization of microglia and neuroinflammation, and its mechanism may be related to the inhibition of NF-κB activation.
4.Mechanism of Gegen Qinliantang in Regulating Microglia Polarization to Improve Diabetic Cognitive Impairment
Hui FENG ; Chunxiang ZHOU ; Tianyi REN ; Weiwei TAO ; Yun LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):1-10
ObjectiveTo explore the protective effect and underlying mechanism of Gegen Qinliantang on cognitive function in db/db mice with diabetic cognitive impairment (DCI). MethodsThirty-two 8-week-old male db/db mice were randomly assigned to the model group, dapagliflozin group (1.0 mg·kg-1·d-1), low-dose Gegen Qinliantang group (6.24 g·kg-1·d-1), and high-dose Gegen Qinliantang group (24.96 g·kg-1·d-1). Eight db/m mice served as the normal group. All mice were administered the corresponding treatment once daily by gavage for 10 consecutive weeks. Body weight and fasting blood glucose (FBG) were dynamically monitored. The Morris water maze test was used to evaluate cognitive function. Hematoxylin-eosin (HE) staining and Nissl staining were used to observe pathological changes in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in hippocampal tissue. Immunofluorescence double staining was used to detect the co-expression of M1 microglial marker CD16/32 and ionized calcium-binding adapter molecule 1 (IBA1) in the hippocampus. Western blot analysis was performed to detect the protein expression of postsynaptic density protein 95 (PSD-95), synapsin (SYN), nuclear factor-κB p65 (NF-κB p65), and phosphorylated NF-κB p65 (p-NF-κB p65) in the hippocampus. ResultsCompared with the normal group, the model group showed significantly increased body weight and FBG levels (P<0.01), significantly prolonged escape latency and reduced platform crossings in the Morris water maze test (P<0.01), disordered arrangement of hippocampal neurons, nuclear pyknosis, increased neuronal necrosis, reduced Nissl bodies, decreased expression of synaptic proteins PSD-95 and SYN (P<0.01), increased CD16/32+ /IBA1+ positive rate, elevated levels of TNF-α and IL-1β, and an increased p-NF-κB p65/NF-κB p65 ratio (P<0.01). Compared with the model group, the dapagliflozin group exhibited significantly reduced FBG levels at weeks 5 and 10 (P<0.05, P<0.01) and increased body weight. The high-dose Gegen Qinliantang group showed significantly reduced FBG at week 10 (P<0.05). Escape latency was significantly reduced on days 3 and 5 of the water maze test in the dapagliflozin group and on day 5 in the high-dose Gegen Qinliantang group (P<0.05). Platform crossings were significantly increased in both the dapagliflozin group and the high-dose Gegen Qinliantang group (P<0.05). Hippocampal pathological damage was alleviated to varying degrees in the dapagliflozin group and the low- and high-dose Gegen Qinliantang groups, with significantly increased expression of PSD-95 and SYN (P<0.01). Further studies revealed that both low- and high-dose Gegen Qinliantang reduced hippocampal IL-1β levels and the CD16/32+/IBA1+ positive rate of microglia, while the high-dose group also significantly reduced hippocampal TNF-α levels and the p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionGegen Qinliantang can improve hyperglycemia, cognitive dysfunction, and synaptic damage in DCI, inhibit M1 polarization of microglia and neuroinflammation, and its mechanism may be related to the inhibition of NF-κB activation.
5.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
6.Advance on clinical and pharmacological research of Bawei Chenxiang Powder and related formulae.
Lu-Lu KANG ; Jia-Tong WANG ; Feng ZHOU ; Guo-Dong YANG ; Xiao-Juan LI ; Xiao-Li GAO ; Luobu GESANG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(10):2875-2882
Bawei Chenxiang Powder(BCP), first documented in the Tibetan medical work Four Medical Classics, has been widely applied in clinical practices in Tibetan and Mongolian medicines since its development. It has the effect of clearing the heart heat, calming the mind, and inducing resuscitation. On the basis of BCP, multiple types of formulae have been developed, such as Bawei Yiheyi Chenxiang Powder, Bawei Rang Chenxiang Powder, and Bawei Pingchuan Chenxiang Powder, which are widely used for treating cardiovascular and respiratory diseases. Current pharmacological research has revealed the pharmacological effects of BCP and its related formulae against myocardial ischemia, cerebral ischemia, renal ischemia, and anti-hypoxia. BCP and its related formulae introduced more treatment options for related clinical diseases and provided insights for fully comprehending the essence and pharmacological components of the formulae. This paper systematically reviewed the clinical and pharmacological research on BCP and its related formulae, analyzing the formulation principles and potential key flavors and active ingredients. This lays a fundamental scientific basis for the clinical use, quality evaluation, and subsequent development and application of BCP and its related formulae, providing references for studying traditional Chinese medicine formulae in a thorough and systematic manner.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Powders/chemistry*
;
Animals
;
Medicine, Chinese Traditional
7.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
8.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
9.Integrating genomics and metabolomics to reveal the genetic basis and potential therapeutic targets of diabetic foot.
Yi ZHANG ; Cheng CHEN ; Zhen-Dong LI ; Hai-Chao ZHOU ; Bing LI ; Yun-Feng YANG
China Journal of Orthopaedics and Traumatology 2025;38(9):891-901
OBJECTIVE:
To screen out the key metabolites related to diabetic foot (DF) by integrating genome-wide association studies (GWAS) and metabolome genome-wide association studies (mGWAS).
METHODS:
The literature databases such as PubMed and China national knowledge infrastructure(CNKI), as well as genomics databases such as PAN UKBB, FinnGen, and IEU Open GWAS were systematically retrieved from database estobilishment to November 2024 on DF-related single nucleotide polymorphisms and genome-wide association studies. DF-single nucleotide polymorphism-metabolite network was constructed by mGWAS package and mGWAS-Explorer platform. The causal relationship between key factors was evaluated by two-sample Mendelian randomization. The genetic correlation between DF and 575 metabolites (source:IEU Open GWAS) was evaluated by linkage disequilibrium score regression. In vitro experiments were conducted to induce injury of human umbilical vein endothelial cells with 30 mM glucose and intervene with 20 μM γ-tocopherol. Changes in cell migration, scratch healing and tube formation function were detected.
RESULTS:
Twenty-senen literatures on single nucleotide polymorphism literatures and 3 studies on GWAS were included. Genetic analysis results showed DF-related single nucleotide polymorphisms were enriched in vascular endothelial dysfunction-related pathways (such as fluid shear stress and atherosclerosis). The results of metabolic network analysis screened out 19 associated metabolites, among which 12 such as γ -tocopherol and pyruvate had significant genetic correlations with DF. Mendelian randomization suggested matrix metalloproteinase-9(MMP-9) might be a potential driver of DF (β=0.658, P=0.063 8), and the occurrence of DF could reduce the level of high-density lipoprotein (β=-0.002, P=0.015 2). The results of in vitro experiments confirmed that γ -tocopherol could improve endothelial dysfunction induced by high glucose, specifically manifested as an increase in the number of cell migrations, improvement in the scratch healing rate, and recovery of tubule formation ability (P<0.05).
CONCLUSION
DF has a genetic basis centered on vascular endothelial dysfunction, and its occurrence can lead to further metabolic disorders. The key single nucleotide polymorphism loci integrated provided molecular markers for the risk stratification of foot ulcers in diabetic patients. In addition, γ -tocopherol has demonstrated clinical application potential as a therapeutic drug for DF by significantly improving the function of vascular endothelial cells in a high-glucose environment.
Humans
;
Diabetic Foot/drug therapy*
;
Polymorphism, Single Nucleotide
;
Genome-Wide Association Study
;
Genomics
;
Metabolomics
;
Metabolome
10.Impact of posterior cruciate ligament resection on the elasticity of the periarticular soft tissue sleeve in the knee joint.
Yun-Feng ZHANG ; De-Jin YANG ; Zhao-Lun WANG ; Yi-Xin ZHOU ; Hao TANG ; Xiang-Dong WU ; Han-Long ZHENG
China Journal of Orthopaedics and Traumatology 2025;38(10):1055-1060
OBJECTIVE:
To evaluate the effects of posterior cruciate ligament(PCL) resection on soft tissue elasticity and knee stability in total knee arthroplasty(TKA).
METHODS:
Six adult cadaveric knee specimens (involving 10 knees) were included in the study. With the assistance of the robotic system(TiRobot Recon, TINAVI, Beijing), total knee arthroplasty (TKA) was performed sequentially using cruciate retaining (CR) prostheses and posterior stabilizing (PS) prostheses. Between the two surgical procedures, the femoral and tibial osteotomy surfaces were not altered;only the posterior cruciate ligament (PCL) was resected and the intercondylar fossa was treated. After installing the femoral trial component, a soft tissue balance solver was used to apply tension ranging from 30 N to 90 N in 5 N increments at 0°, 10°, and 90° of knee flexion. Meanwhile, the medial and lateral joint gaps were measured synchronously. Based on the tension-gap coupling data, the equivalent elastic coefficients of the medial and lateral soft tissue sleeves at different knee flexion angles, as well as the range of the joint line convergence angle (JLCA) under fixed varus-valgus stress, were calculated. Additionally, the gap balance status under 80 N of tension was analyzed. Self-control comparisons of each indicator were conducted before and after PCL resection to analyze the change patterns.
RESULTS:
After PCL resection, in the fully extended position (knee flexion 0°). The medial equivalent elastic coefficient was 32.2 (25.7, 63.3) N·mm-1 for the CR prosthesis and 27.7 (22.0, 51.9) N·mm-1 for the PS prosthesis, and the statistically significant difference (P=0.013). The range of JLCA was 0.41°(0.26, 0.55)° for the CR prosthesis, which was smaller than 0.75° (0.40, 0.98)° for the PS prosthesis, and the difference was statistically significant(P=0.041). At 90° of knee flexion, the medial joint gap was 10.7(10.1, 11.7) mm for the CR prosthesis, which was smaller than 12.1(10.9, 15.1) mm for the PS prosthesis, with a statistically significant difference(P=0.011). No statistically significant differences were observed in other joint gaps.
CONCLUSION
PCL resection reduces the rigidity of the medial soft tissues in the fully extended knee and increases the medial joint gap in the flexed position, thereby affecting knee stability and balance. This finding suggests that PS and CR prostheses may require different morphological designs, and there should be differences in indications and osteotomy strategies between CR-TKA and PS-TKA. CR-TKA is more suitable for patients with preoperative medial soft tissue laxity.
Humans
;
Posterior Cruciate Ligament/physiopathology*
;
Knee Joint/physiopathology*
;
Arthroplasty, Replacement, Knee
;
Elasticity
;
Male
;
Female
;
Middle Aged
;
Aged
;
Biomechanical Phenomena
;
Adult

Result Analysis
Print
Save
E-mail