1.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
2.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
3.Application of Non-invasive Deep Brain Stimulation in Parkinson’s Disease Treatment
Yu-Feng ZHANG ; Wei WANG ; Zi-Jun LU ; Jiao-Jiao LÜ ; Yu LIU
Progress in Biochemistry and Biophysics 2025;52(5):1196-1205
Parkinson’s disease (PD) is a common neurodegenerative disorder that significantly impacts patients’ independence and quality of life, imposing a substantial burden on both individuals and society. Although dopaminergic replacement therapies provide temporary relief from various symptoms, their long-term use often leads to motor complications, limiting overall effectiveness. In recent years, non-invasive deep brain stimulation (DBS) techniques have emerged as promising therapeutic alternatives for PD, offering a means to modulate deep brain regions with high precision without invasive procedures. These techniques include temporal interference stimulation (TIs), low-intensity transcranial focused ultrasound stimulation (LITFUS), transcranial magneto-acoustic stimulation (TMAS), non-invasive optogenetic modulation, and non-invasive magnetoelectric stimulation. They have demonstrated significant potential in alleviating various PD symptoms by modulating neural activity within specific deep brain structures affected by the disease. Among these approaches, TIs and LITFUS have received considerable attention. TIs generate low-frequency interference by applying two slightly different high-frequency electric fields, targeting specific brain areas to alleviate symptoms such as tremors and bradykinesia. LITFUS, on the other hand, uses low-intensity focused ultrasound to non-invasively stimulate deep brain structures, showing promise in improving both motor function and cognition in PD patients. The other three techniques, while still in early research stages, also hold significant promise for deep brain modulation and broader clinical applications, potentially complementing existing treatment strategies. Despite these promising findings, significant challenges remain in translating these techniques into clinical practice. The heterogeneous nature of PD, characterized by variable disease progression and individualized treatment responses, necessitates flexible protocols tailored to each patient’s unique needs. Additionally, a comprehensive understanding of the mechanisms underlying these treatments is crucial for refining protocols and maximizing their therapeutic potential. Personalized medicine approaches, such as the integration of neuroimaging and biomarkers, will be pivotal in customizing stimulation parameters to optimize efficacy. Furthermore, while early-stage clinical trials have reported improvements in certain symptoms, long-term efficacy and safety data are limited. To validate these techniques, large-scale, multi-center, randomized controlled trials are essential. Parallel advancements in device design, including the development of portable and cost-effective systems, will improve patient access and adherence to treatment protocols. Combining non-invasive DBS with other interventions, such as pharmacological treatments and physical therapy, could also provide a more comprehensive and synergistic approach to managing PD. In conclusion, non-invasive deep brain stimulation techniques represent a promising frontier in the treatment of Parkinson’s disease. While they have demonstrated considerable potential in improving symptoms and restoring neural function, further research is needed to refine protocols, validate long-term outcomes, and optimize clinical applications. With ongoing technological and scientific advancements, these methods could offer PD patients safer, more effective, and personalized treatment options, ultimately improving their quality of life and reducing the societal burden of the disease.
4.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
5.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
6.Prevalence of asymptomatic malaria in high- and low-transmission areas of Tanzania: The role of asymptomatic carriers in malaria persistence and the need for targeted surveillance and control efforts
Ernest MAZIGO ; Hojong JUN ; Wang-Jong LEE ; Johnsy Mary LOUIS ; Fadhila FITRIANA ; Jadidan Hada SYAHADA ; Fauzi MUH ; Feng LU ; Md Atique AHMED ; Seok Ho CHA ; Wanjoo CHUN ; Won Sun PARK ; Se Jin LEE ; Sunghun NA ; Joon-Hee HAN ; Nyalali KIJA ; Smart GEODFREY ; Eun-Teak HAN ; Jim TODD ; Alphaxard MANJURANO ; Winifrida KIDIMA ; Jin-Hee HAN
Parasites, Hosts and Diseases 2025;63(1):57-65
As many countries implement different programs aimed at eliminating malaria, attention should be given to asymptomatic carriers that may interrupt the progress. This was a community-based cross-sectional study conducted in Tanzania from December 2022 to July 2023 within 4 villages from each of the 3 regions, Geita and Kigoma, which are high malaria transmission, and Arusha, which is low transmission. Malaria was diagnosed in asymptomatic individuals aged 1 year and older using the malaria rapid diagnostic test and light microscope. A total of 2,365 of 3,489 (67.9%) participants were enrolled from high-transmission villages. The overall prevalence was 25.5% and 15.8% by malaria rapid diagnostic test and light microscope, respectively. Using the respective tools, the prevalence was significantly higher at 35.6% (confidence interval (CI)=23.6–49.9) and 23.1% (CI=16.2–35.1) in the high-transmission regions (Geita and Kigoma) compared with 2.9% (CI=1.1–3.5) and 1.1% (CI=0.7–1.8) in the low-transmission region (Arusha). Children younger than 15 years and males accounted for the greatest proportion of infections. In the study area, the prevalence of asymptomatic cases was higher than that of reported symptomatic cases in health facilities. We hypothesize that these parasite reservoirs may contribute to the persistence of malaria in the country. Therefore, to achieve comprehensive malaria control in the country, the surveillance and screening of asymptomatic malaria cases are vital.
7.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
8.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
9.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
10.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.

Result Analysis
Print
Save
E-mail