1.Effect of ultrasound-guided foraminal electroacupuncture on spinal cord injury based on the Wnt/β-catenin signaling pathway.
Weixian WU ; Bin CHEN ; Jing LIU ; Li WANG ; Feizhen CHEN ; Yanling WU
Chinese Acupuncture & Moxibustion 2025;45(10):1442-1449
OBJECTIVE:
To observe the effects of ultrasound-guided foraminal electroacupuncture on neuronal apoptosis and motor function in rats with spinal cord injury (SCI), and to explore the potential underlying mechanisms.
METHODS:
Thirty-six SPF-grade Sprague-Dawley rats were randomly assigned to a sham operation group, a model group, and an ultrasound-guilded electroacupuncture group (electroacupuncture group), with 12 rats in each group. In the sham operation group, the spinal cord was exposed and then the incision was sutured without contusion. In the other two groups, SCI models were established using a modified Allen's impact method. On days 1, 3, 7, and 14 after modeling, the electroacupuncture group received electroacupuncture intervention at the T9/T10 and T10/T11 intervertebral foramen under ultrasound guidance, avoiding spinal cord injury. Stimulation parameters were dense-disperse wave at 2 Hz/100 Hz and 1-2 mA for each session. Following interventions on days 1, 3, 7, and 14, the Basso-Beattie-Bresnahan (BBB) score was assessed; the inclined plane test was used to assess hindlimb grip strength in rats. After the intervention, HE staining was used to observe spinal cord morphology; TUNEL staining was used to detect neuronal apoptosis; ELISA was used to measure the serum levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α); Western blot was used to analyze the protein expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN in spinal tissue; quantitative real-time PCR was used to detect the mRNA expression of Wnt-4, β-catenin, c-Myc, Bax, Bcl-2, and NeuN.
RESULTS:
Compared with the sham operation group, the model group showed significantly reduced BBB scores (P<0.05), and reduced inclined plane angles (P<0.05) at all time points. Compared with the model group, the electroacupuncture group exhibited increased BBB scores on days 3, 7, and 14 (P<0.05), and higher inclined plane angles on days 1, 3, 7, and 14 (P<0.05). Compared with the sham operation group, the model group showed disorganized spinal cord structure with increased inflammatory cells and necrotic neurons, higher number of apoptotic neurons in spinal tissue (P<0.05), elevated serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, c-Myc, and Bax (P<0.05), and decreased protein and mRNA expression of Bcl-2 and NeuN in spinal tissue (P<0.05). Compared with the model group, the electroacupuncture group had fewer inflammatory cells and apoptotic neurons in spinal tissue (P<0.05), reduced serum IL-6, IL-1β, and TNF-α levels (P<0.05), increased protein and mRNA expression of Wnt-4, β-catenin, Bcl-2, and NeuN (P<0.05), and decreased protein and mRNA expression of c-Myc and Bax in spinal tissue (P<0.05).
CONCLUSION
Ultrasound-guided foraminal electroacupuncture could improve motor function in rats with SCI, potentially by regulating the expression of molecules related to the Wnt-4/β-catenin signaling pathway to inhibit neuronal apoptosis and inflammatory responses.
Animals
;
Electroacupuncture/methods*
;
Spinal Cord Injuries/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Wnt Signaling Pathway
;
Male
;
Humans
;
Female
;
beta Catenin/metabolism*
;
Apoptosis
;
Ultrasonography
;
Tumor Necrosis Factor-alpha/genetics*
;
Spinal Cord/metabolism*
2.Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease
Han GAO ; Xianghui HUANG ; Weicheng CHEN ; Zhiyu FENG ; Zhengshan ZHAO ; Ping LI ; Chaozhong TAN ; Jinxin WANG ; Quannan ZHUANG ; Yuan GAO ; Shaojie MIN ; Qinyu YAO ; Maoxiang QIAN ; Xiaojing MA ; Feizhen WU ; Weili YAN ; Wei SHENG ; Guoying HUANG
Chinese Medical Journal 2024;137(15):1823-1834
Background::Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD.Methods::Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4-overexpressing human induced pluripotent stem cell lines as well as pnpla4-overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. Results::Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. Conclusions::Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.

Result Analysis
Print
Save
E-mail