1.Investigating the protective effect of naringenin on hydrogen peroxide induced oxidative damage of human periodontal ligament stem cells by regulating the forkhead box protein O-1/β-catenin pathway.
Li ZHANG ; Shiyuan PENG ; Feiyang TANG ; Jingwei JIAN ; Shuosheng YUAN ; Xiaomei XU
West China Journal of Stomatology 2025;43(4):559-569
OBJECTIVES:
Investigating the protective effect of naringenin (NAR) on the osteogenic potential of human periodontal ligament stem cells (hPDLSCs) under oxidative stress and its related mechanisms.
METHODS:
The oxidative damage model of hPDLSCs was established using hydrogen peroxide (H2O2) andthe hPDLSCs were treated with different concentrations of NAR and 0.5 μmol/L forkhead box protein O-1 (FOXO1) inhibitor AS1842856. After that, the cell counting kit-8 (CCK8) was used to determine the optimal concentrations of H2O2 and NAR. The alkaline phosphatase (ALP) staining and real time fluorescent quantitative reverse transcription polymerase chain reaction (qRT-PCR) were employed to assess the expression of ALP, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) in hPDLSCs of each group. The enzyme-linked immunosorbent assay (ELISA) and 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining were utilized to evaluate the expression of reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) in hPDLSCs. Meanwhile, qRT-PCR and western blot were used to detect the expression levels of FOXO1 and β-catenin, both are pathway related genes and proteins.
RESULTS:
H2O2 exposure led to an increase in oxidative damage in hPDLSCs, characterized by a rise in intracellular ROS levels and increased expression of MDA and LDH (P<0.05). At the same time, the osteogenic differentiation ability of hPDLSCs decreased, as evidenced by lighter ALP staining and reduced expression levels of osteogenic differentiation-related genes ALP, RUNX2 and OCN (P<0.05). Co-treatment with NAR alleviated the oxidative damage in hPDLSCs, enhanced their antioxidant capacity, and restored their osteogenic ability. The FOXO1 inhibitor AS1842856 downregulated the expression of β-catenin (P<0.05) and significantly diminished both the antioxidant effect of NAR and its ability to restore osteogenesis (P<0.05).
CONCLUSIONS
NAR can enhance the antioxidant capacity of hPDLSCs by activating the FOXO1/β-catenin signaling pathway within hPDLSCs, thereby mitigating oxidative stress damage and alleviating the loss of osteogenic capacity.
Humans
;
Oxidative Stress/drug effects*
;
Periodontal Ligament/cytology*
;
Hydrogen Peroxide
;
Forkhead Box Protein O1/metabolism*
;
Stem Cells/cytology*
;
Flavanones/pharmacology*
;
beta Catenin/metabolism*
;
Osteogenesis/drug effects*
;
Signal Transduction
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Alkaline Phosphatase/metabolism*
;
Osteocalcin/metabolism*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
2.Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro.
Fen ZHANG ; Lanlan XIAO ; Ya YANG ; Menghao ZHOU ; Yalei ZHAO ; Zhongyang XIE ; Xiaoxi OUYANG ; Feiyang JI ; Shima TANG ; Lanjuan LI
Frontiers of Medicine 2023;17(3):534-548
Autoimmune hepatitis (AIH) is a severe globally distributed liver disease that could occur at any age. Human menstrual blood-derived stem cells (MenSCs) have shown therapeutic effect in acute lung injury and liver failure. However, their role in the curative effect of AIH remains unclear. Here, a classic AIH mouse model was constructed through intravenous injection with concanavalin A (Con A). MenSCs were intravenously injected while Con A injection in the treatment groups. The results showed that the mortality by Con A injection was significantly decreased by MenSCs treatment and liver function tests and histological analysis were also ameliorated. The results of phosphoproteomic analysis and RNA-seq revealed that MenSCs improved AIH, mainly by apoptosis and c-Jun N-terminal kinase/mitogen-activated protein signaling pathways. Apoptosis analysis demonstrated that the protein expression of cleaved caspase 3 was increased by Con A injection and reduced by MenSCs transplantation, consistent with the TUNEL staining results. An AML12 co-culture system and JNK inhibitor (SP600125) were used to verify the JNK/MAPK and apoptosis signaling pathways. These findings suggested that MenSCs could be a promising strategy for AIH.
Mice
;
Animals
;
Humans
;
Hepatitis, Autoimmune/pathology*
;
Signal Transduction
;
Disease Models, Animal
;
Stem Cells
3.Metabolic Changes of Acanthopanax senticosus Fruits During Development
Feiyang SUN ; Xiaorui GUO ; Ying SONG ; Mingyuan XU ; Jing ZHANG ; Zhonghua TANG ; Hongwei NI
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(21):163-170
ObjectiveTo study the changes of primary metabolites and phenols in the fruits of Acanthopanax senticosus at different development stages, so as to provide a theoretical basis for the rational utilization of A. senticosus fruit resources. MethodThe primary metabolites and phenols in the fruits at different development stages were determined via gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) and then compared by multivariate statistical analysis. ResultA total of 274 chromatographic peaks were obtained by GC-MS-based non-targeted metabonomics and 24 differential metabolites were screened out by multivariate statistical analysis. The differential metabolites were mainly concentrated in pentose phosphate pathway, galactose metabolism, ascorbic acid and aldose metabolism pathways. After color conversion, the pentose phosphate pathway and galactose metabolism were activated and increasing sugars were accumulated. The ascorbic acid and aldose metabolism pathways were active before color conversion, with high accumulation of the end product ascorbic acid. The ultra-high liquid chromatography-mass spectrometry (UPLC-MS) identified 28 phenols in the fruits at different development stages. Flavonoids were accumulated mainly at the green ripening stage before color conversion, and phenolic acids were accumulated mainly after color conversion. ConclusionThe accumulation of primary metabolites and phenols in A. senticosus fruits varies significantly among different development stages

Result Analysis
Print
Save
E-mail