1.Spatio-temporal clustering analysis of influenza in Jiaxing City
WANG Yuanhang ; FU Xiaofei ; QI Yunpeng ; LIU Yang ; ZHOU Wanling ; GUO Feifei
Journal of Preventive Medicine 2025;37(1):55-58
Objective:
To investigate the epidemiological and spatio-temporal characteristics of influenza in Jiaxing City, Zhejiang Province, so as to provide insights into perfecting the prevention and control strategies of influenza.
Methods:
Data of influenza in Jiaxing City from 2019 to 2023 were collected from the Chinese Disease Prevention and Control Information System. Population data of the same period were collected from the Zhejiang Health Information Network Reporting System. The epidemiological characteristics of influenza were analyzed using descriptive analysis. Vector map information was collected from the Open Street Map, and the spatio-temporal clustering characteristics of influenza were analyzed using spatial autocorrelation and spatio-temporal scanning.
Results:
A total of 181 501 cases of influenza were reported in Jiaxing City from 2019 to 2023, with an average annual reported incidence of 653.93/105. The majority of cases were aged 5 to <15 years (59 785 cases, 32.94%). The majority of the occupations were students (78 239 cases, 43.11%) and pre-school children (33 715 cases, 18.58%). The county (city, district) with the highest reported incidence was Haining City (1 451.70/105), and the town (street) with the highest reported incidence was Chang'an Town (1 932.78/105). Spatial autocorrelation analysis showed that the incidence of influenza in Jiaxing City from 2019 to 2023 had positive spatial correlations (all Moran's I>0, all P<0.05), with a high-high clustering in the southern region. Spatio-temporal scanning analysis showed that there was a spatio-temporal clustering of influenza in Jiaxing City from 2019 to 2023, with the southern region being the primary-type clustering area and the period between November and January of the following year being the clustering time.
Conclusion
There was a significant spatio-temporal clustering of influenza in Jiaxing City from 2019 to 2023, with winter being the peak season and the southern region being the primary area.
2.Study on meal preferences of school aged children based on discrete choice experiment
Chinese Journal of School Health 2025;46(1):45-49
Objective:
To explore the relative importance of different food attributes and levels in food decision making of school aged children, and to understand their meal preferences, so as to provide the evidence for formulating precise intervention strategies for dietary behaviours of school aged children.
Methods:
From May to June 2024, a total of 854 children aged 11 to 15 years old were selected from 2 middle schools (each school in urban and rural areas) in both Hubei Province and Anhui Province by stratified cluster random sampling method to conduct a D-optimal discrete choice experiment. The mixed Logit model was used to analyze children s preference for meal attributes and different levels, and to calculate the relative importance (RI) of attributes and willingness to pay (WTP) in meal choices.
Results:
The included five food attributes had statistical significance on meal choice of school aged children ( P <0.05). The relative importance of food attributes affecting the meal choices of school aged children in descending order were dining mode ( RI =31.26%), food varieties ( RI =30.56%), cooking method( RI =23.84%), taste( RI =8.06%) and price ( RI =6.27%). Among them, school aged children preferred home cooked meals ( β =0.74) (WTP=86.3 yuan),varied foods(grain/tubers+vegetables+fish, meat, eggs and beans) ( β =0.61) (WTP=71.9 yuan), fried/roasted cooking ( β =0.51) and spicy taste ( β =0.33).Price was negatively correlated with meal choices( β =-0.01) ( P <0.05). Based on residential area and body mass index (BMI), the stratified analysis showed that dining mode was highest in the relative importance for rural children with overweight and obese children ( RI =31.28%,34.17%), both of whom preferred home cooked meals ( β =0.76, 0.91), and meals containing fish, meat, eggs and beans with grain/tubers or grain/tubers and vegetables in terms of food choice (area: β =0.53, 0.53 ; BMI: β =0.55, 0.56) ( P <0.05).
Conclusions
School aged children have different preferences for different attributes of meals. The quality of school meals should be improved,the cost of buying healthy meals should be reduced,targeted family health education should be carried out,and healthy cooking methods should be advocated.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
7.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
8.Hyperoside Alleviates LPS-induced Inflammation in Zebrafish Model via TLR4/MyD88/NF-κB Pathway
Qing LAN ; Anna WANG ; Feifei ZHOU ; Keqian LIU ; Zhao LI ; Wenjing YU ; Shuyao TANG ; Ping LI ; Shaowu CHENG ; Sisi DENG ; Zhenyan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):63-72
ObjectiveTo investigate the intervention effects and mechanisms of the flavonoid hyperoside (Hyp) on lipopolysaccharide (LPS)-induced inflammation in the zebrafish model. MethodsZebrafish larvae were either microinjected with 0.5 g·L-1 LPS or immersed in 1 g·L-1 LPS for the modeling of inflammation. The larvae were then treated with Hyp at 25, 50, and 100 mg·L-1 through immersion for four consecutive days. The inflammatory phenotypes were assessed by analyzing the mortality rate, malformation rate, body length, and yolk sac area ratio. Behavioral tests were conducted to evaluate the inflammatory stress responses, and macrophage migration was observed by fluorescence microscopy. Additionally, the mRNA levels of inflammation-related genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine C-C motif ligand 2 (CCL2), chemokine C-X3-C motif receptor 1 (CX3CR1), chemokine C-C motif receptor 2 (CCR2), and genes associated with the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, were measured by Real-time quantitative polymerase chain reaction(Real-time PCR). ResultsCompared with the pure water injection group, the model group exhibited increased mortality, malformation rates and yolk sac area ratio (P0.01), reduced body length (P0.01), increased total swimming distance and high-speed swimming duration (P0.01), and up-regulated mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.01). Hyp at low, medium and high doses, as well as aspirin, reduced the mortality and malformation rates (P0.05,P0.01), increased the body length (P0.05,P0.01), decreased the yolk sac area ratio (P0.01), reduced the high-speed swimming duration (P0.01), and down-regulated the mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.05,P0.01) compared with the model group. ConclusionHyp may modulate the TLR4/MyD88/NF-κB pathway to ameliorate inflammatory phenotypes and alleviate stress conditions in zebrafish, thereby exerting the anti-inflammatory effect.
9.Circulating immunological transcriptomic profile identifies DDX3Y and USP9Y on the Y chromosome as promising biomarkers for predicting response to programmed death 1/programmed death ligand 1 blockade.
Liting YOU ; Zhaodan XIN ; Feifei NA ; Min CHEN ; Yang WEN ; Jin LI ; Jiajia SONG ; Ling BAI ; Jianzhao ZHAI ; Xiaohan ZHOU ; Binwu YING ; Juan ZHOU
Chinese Medical Journal 2025;138(3):364-366
10.Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia.
Mingya LIU ; Feifei QI ; Jue WANG ; Fengdi LI ; Qi LV ; Ran DENG ; Xujian LIANG ; Shasha ZHOU ; Pin YU ; Yanfeng XU ; Yaqing ZHANG ; Yiwei YAN ; Ming LIU ; Shuyue LI ; Guocui MOU ; Linlin BAO
Protein & Cell 2025;16(2):148-155


Result Analysis
Print
Save
E-mail