1.Chemical constituents from the branches and leaves of Toona ciliata var pubescens and their antitumor activities
Ge-Zhou LIU ; Wei-Dong PAN ; Jin-Yu LI ; Hua-Yong LOU ; Han-Fei LIU ; Kai-Qin LIN
Chinese Traditional Patent Medicine 2024;46(11):3676-3682
AIM To study the chemical constituents from the branches and leaves of Toona ciliata Roem.var.pubescens(Franch.)Hand-Mazz.and their antitumor activities.METHODS The compounds were isolated and purified by silica gel,RP-18 reverse phase silica gel and semi-preparative HPLC,the structures of compounds were identified by physicochemical properties and spectral data.The antitumor activities were determined by MTT method.RESULTS Fifteen compounds were isolated and identified as toonaolide D(1),toonaciliatin E(2),bourjotinolone A(3),(21R,23R)-epoxy-21α-ethoxy-24S,25-dihydroxyapotirucalla-7-en-3-one(4),(Z)-toonasterone C(5),(E)-toonasterone(6),3-epi-dyscusin C(7),(Z)-aglawone(8),(E)-volkendousin(9),8(14),15-isopimaradiene-2α,3α,19-triol(10),(-)-loliolide(11),cyclohexenone(12),pubinernoid A(13),quercetin-3-O-(4″-methoxy)-α-L-rahmnopyranosyl(14),5-hydroxymethyl-2-furancarboxaldehyde(15).The IC50 values of compounds 3 and 4 on K562 cells were 54.2 and 47.3 μmol/L,respectively,and the IC50 values on HEL cells were 47.3 and 61.1 μmol/L,respectively.CONCLUTION Compounds 4,7,10 and 11 are isolated from Toona genus for the first time,and compounds 2,15 are first isolated from this plant.Compounds 3 and 4 show weak antitumor activities.
2.Simulated Microgravity can Promote the Apoptosis and Change Inflammatory State of Kupffer Cells
Ge JUN ; Liu FEI ; Nie HONGYUN ; Yue YUAN ; Liu KAIGE ; Lin HAIGUAN ; Li HAO ; Zhang TAO ; Yan HONGFENG ; Xu BINGXIN ; Sun HONGWEI ; Yang JIANWU ; Si SHAOYAN ; Zhou JINLIAN ; Cui YAN
Biomedical and Environmental Sciences 2024;37(10):1117-1127
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells. Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells. Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells. Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
3.Genetic analysis and assisted reproductive guidance for two infertile patients with rare small supernumerary marker chromosomes
Duo YI ; Shimin YUAN ; Liang HU ; Fei GONG ; Keli LUO ; Hao HU ; Yueqiu TAN ; Guangxiu LU ; Ge LIN ; Dehua CHENG
Chinese Journal of Medical Genetics 2024;41(5):519-525
Objective:To carry out cytogenetic and molecular genetic analysis for two infertile patients carrying rare small supernumerary marker chromosomes (sSMC).Methods:Two infertile patients who received reproductive and genetic counseling at CITIC Xiangya Reproductive and Genetic Hospital on October 31, 2018 and May 10, 2021, respectively were selected as the study subjects. The origin of sSMCs was determined by conventional G banding, fluorescence in situ hybridization (FISH) and copy number variation sequencing (CNV-seq). Microdissection combined with high-throughput whole genome sequencing (MicroSeq) was carried out to determine the fragment size and genomic information of their sSMCs. Results:For patient 1, G-banded karyotyping and FISH revealed that he has a karyotype of mos47, XY, del(16)(p10p12), + mar[65]/46, XY, del(16)(p10p12)[6]/48, XY, del(16)(p10p12), + 2mar[3].ish mar(Tel 16p-, Tel 16q-, CEP 16-, WCP 16+ ). CNV analysis has yielded a result of arr[GRCh37]16p12.1p11.2(24999364_33597595)×1[0.25]. MicroSeq revealed that his sSMC has contained the region of chromosome 16 between 24979733 and 34023115 (GRCh37). For patient 2, karyotyping and reverse FISH revealed that she has a karyotype of mos 47, XX, + mar[37]/46, XX[23].rev ish CEN5, and CNV analysis has yielded a result of seq[GRCh37]dup(5)(p12q11.2)chr5: g(45120001_56000000)dup[0.8]. MicroSeq results revealed that her sSMC has contained the region of chromosome 5 between 45132364 and 55967870(GRCh37). After genetic counseling, both couples had opted in vitro fertilization (IVF) treatment and preimplantation genetic testing (PGT). Conclusion:For individuals harboring sSMCs, it is vital to delineate the origin and structural characteristics of the sSMCs for their genetic counseling and reproductive guidance. Preimplantation genetic testing after microdissection combined with high-throughput whole genome sequencing (MicroSeq-PGT) can provide an alternative treatment for carrier couples with a high genetic risk.
4.The common morphology and clinical significance of the axillary arch.
Ming Qing HUANG ; Fei GE ; Xiao Chen HOU ; Wen Lin CHEN
Chinese Journal of Surgery 2023;61(2):168-172
Axillary arch is the most common type of axillary muscle fiber variation, with about 10.8% incidence in the Chinese population. Its natural forms are varied and fluid, with different starting points and terminations, and clinicians frequently lack recognition. Under commonly applicated sentinel lymph node biopsy, the axillary arch has been endowed with more clinical significance. The fabric of axillary arch will not only block lymphatic drainage in axilla and unclear anatomical level of axillary dissection, but also compress the axillary neurovascular bundle, causing upper limb venous thrombosis, lymphedema and nerve entrapment. The intumescent axillary arch may also show abnormal axillary bulge. In addition to finding axillary arch during cadaveric study and operation, several of imaging methods availably diagnose axillary arch preoperative, which can create new way for detection of axillary arch and extension of the surgical plan of sentinel lymph node biopsy. Although embryology and comparative anatomy have been used to explain the origin of the axillary arch, most of the ideas are still hypotheses and need further study.
Humans
;
Axilla
;
Clinical Relevance
;
Asian People
;
Drainage
;
Lymph Node Excision
5.Genetic analysis and reproductive intervention of 7 families with gonadal mosaicism for Duchenne muscular dystrophy.
Bodi GAO ; Xiaowen YANG ; Xiao HU ; Wenbing HE ; Xiaomeng ZHAO ; Fei GONG ; Juan DU ; Qianjun ZHANG ; Guangxiu LU ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2023;40(4):423-428
OBJECTIVE:
To explore the genetic basis for 7 families with gonadal mosaicism for Duchenne muscular dystrophy (DMD).
METHODS:
For the 7 families presented at the CITIC Xiangya Reproductive and Genetic Hospital from September 2014 to March 2022, clinical data were collected. Preimplantation genetic testing for monogenic disorders (PGT-M) was carried out for the mother of the proband from family 6. Peripheral venous blood samples of the probands, their mothers and other patients from the families, amniotic fluid samples from families 1 ~ 4 and biopsied cells of embryos cultured in vitro from family 6 were collected for the extraction of genomic DNA. Multiplex ligation-dependent probe amplification (MLPA) was carried out for the DMD gene, and short tandem repeat (STR)/single nucleotide polymorphism (SNP)-based haplotypes were constructed for the probands, other patients, fetuses and embryos.
RESULTS:
The results of MLPA showed that the probands and the fetuses/probands' brothers in families 1 ~ 4, 5, 7 had carried the same DMD gene variants, whilst the probands' mothers were all normal. The proband in family 6 carried the same DMD gene variant with only 1 embryo (9 in total) cultured in vitro, and the DMD gene of the proband's mother and the fetus obtained through the PGT-M were normal. STR-based haplotype analysis showed that the probands and the fetuses/probands' brothers in families 1 ~ 3 and 5 have inherited the same maternal X chromosome. SNP-based haplotype analysis showed that the proband from family 6 has inherited the same maternal X chromosome with only 1 embryo (9 in total) cultured in vitro. The fetuses in families 1 and 6 (via PGT-M) were both confirmed to be healthy by follow up, whilst the mothers from families 2 and 3 had chosen induced labor.
CONCLUSION
Haplotype analysis based on STR/SNP is an effective method for judging gonad mosaicism. Gonad mosaicisms should be suspected for women who have given births to children with DMD gene variants but with a normal peripheral blood genotype. Prenatal diagnosis and reproductive intervention may be adapted to reduce the births of further affected children in such families.
Male
;
Pregnancy
;
Child
;
Humans
;
Female
;
Muscular Dystrophy, Duchenne/diagnosis*
;
Dystrophin/genetics*
;
Mosaicism
;
Exons
;
Prenatal Diagnosis/methods*
;
Nucleotides
6.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
Mice
;
Animals
;
Stomach Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
HMGB1 Protein/metabolism*
;
Phosphorylation
;
Lactic Acid
;
Mice, Inbred BALB C
;
Signal Transduction
7.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
Mice
;
Animals
;
Stomach Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
HMGB1 Protein/metabolism*
;
Phosphorylation
;
Lactic Acid
;
Mice, Inbred BALB C
;
Signal Transduction
8.Transcatheter closure of atrial septal defect with complete aortic rim deficiency
Ming-Fei LI ; Da-Wei LIN ; Wen-Zhi PAN ; Xiao-Chun ZHANG ; Sha-Sha CHEN ; Lei ZHANG ; Da-Xin ZHOU ; Jun-Bo GE
Chinese Journal of Clinical Medicine 2023;30(6):988-992
Objective To investigate the safety and efficacy of interventional therapy in patients with secondary atrial septal defect(ASD)with complete aortic rim deficiency.Methods 402 patients with ASD who underwent transcatheter closure and followed up in outpatient at both 6-month and 1-year in the Department of Cardiology,Zhongshan Hospital,Fudan University from January 2018 to June 2020 were enrolled.They were divided into complete aortic rim deficiency group and normal aortic rim group.The clinical features,interventional parameters,and complications were compared between the two groups.Echocardiographic were used to evaluate the outcome.Results The occluder size was larger in the aortic rim deficiency group([26.4±6.9]mm,n=128)than that in normal aortic rim group([23.4±7.7]mm,P<0.001;n=274).Both groups exhibited no major postoperative complications,and significant improvements were observed in right heart remodeling following the operation,including pulmonary artery pressure decreasing,the diameters of the right atrium and right ventricle reducing,and the degree of tricuspid regurgitation reducing(P<0.001).There was no significant change in left ventricular ejection fraction in all patients.Conclusion Transcatheter closure of ASD with complete aortic rim deficiency is safe and feasible.
9.Pre-conception carrier screening for 21 inherited metabolic diseases in a Chinese population.
Xilin XU ; Wenbin HE ; Ying WANG ; Fei GONG ; Guangxiu LU ; Ge LIN ; Yueqiu TAN ; Juan DU
Chinese Journal of Medical Genetics 2022;39(3):269-275
OBJECTIVE:
To determine the carrier rate for 21 inherited metabolic diseases among a Chinese population of childbearing age.
METHODS:
A total of 897 unrelated healthy individuals (including 143 couples) were recruited, and DNA was extracted from their peripheral blood samples. Whole exome sequencing (WES) was carried out to screen potential variants among 54 genes associated with 21 inherited metabolic diseases. Pathogenic and likely pathogenic variants and unreported loss-of-function variants were analyzed.
RESULTS:
One hundred fourty types of pathogenic/likely pathogenic variants (with an overall number of 183) and unreported loss-of-function variants were detected, which yield a frequency of 0.20 per capita. A husband and wife were both found to carry pathogenic variants of the SLC25A13 gene and have given birth to a healthy baby with the aid of preimplantation genetic diagnosis. The detected variants have involved 40 genes, with the most common ones including ATP7B, SLC25A13, PAH, CBS and MMACHC. Based on the Hardy-Weinberg equilibrium, the incidence of the 21 inherited metabolic diseases in the population was approximately 1/1100, with the five diseases with higher incidence including citrullinemia, methylmalonic acidemia, Wilson disease, glycogen storage disease, and phenylketonuria.
CONCLUSION
This study has preliminarily determined the carrier rate and incidence of 21 inherited metabolic diseases among a Chinese population of childbearing age, which has provided valuable information for the design of neonatal screening program for inherited metabolic diseases. Pre-conception carrier screening can provide an important measure for the prevention of transmission of Mendelian disorders in the population.
Asians/genetics*
;
China
;
Exome
;
Female
;
Humans
;
Infant, Newborn
;
Metabolic Diseases/genetics*
;
Mitochondrial Membrane Transport Proteins/genetics*
;
Oxidoreductases/genetics*
;
Whole Exome Sequencing
10.Schisandra chinensis Oil Attenuates Aristolochic Acid I-Induced Nephrotoxicity in vivo and in vitro.
Yan YANG ; Fei-Lin GE ; Xiao-Yan ZHAN ; Wen-Qing MU ; Zhi-Yong LI ; Li LIN ; Zi-Ying WEI ; Zhao-Fang BAI ; Qin SUN ; Xiao-He XIAO
Chinese journal of integrative medicine 2022;28(7):603-611
OBJECTIVE:
To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry.
RESULTS:
SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01).
CONCLUSIONS
SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.
Animals
;
Apoptosis
;
Aristolochic Acids/toxicity*
;
Cytochrome P-450 CYP1A1/metabolism*
;
Cytochrome P-450 CYP1A2/metabolism*
;
Glutathione/metabolism*
;
Kidney/drug effects*
;
Kidney Diseases/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Plant Oils/therapeutic use*
;
Protective Agents/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Schisandra
;
Superoxide Dismutase/metabolism*

Result Analysis
Print
Save
E-mail