1.Analysis of the content of five radionuclides in wild edible fungi
Zhenglin YE ; Qiang ZHOU ; Fei TUO ; Baolu YANG ; Zeshu LI ; Weihao QIN ; Shuying KONG
Chinese Journal of Radiological Health 2025;34(2):242-248
Objective To determine the content and distribution characteristics of the artificial radionuclide 137Cs and the natural radionuclides 210Pb, 226Ra, 228Ra, and 40K in wild edible fungi, and calculate the committed effective dose due to 137Cs and 210Pb in wild edible fungi. Methods Thirty samples of wild edible fungi were collected and their caps and stems were separated. A total of 60 samples were measured for 137Cs, 210Pb, 226Ra, 228Ra, and 40K using a BE5030 wide-energy, low-background, high-purity germanium γ spectrometer. The paired analysis of the four radionuclides 226Ra, 210Pb, 137Cs, and 40K was performed using SPSS 11.5. Results Among the 60 samples, the detection rates and dry weight specific activity ranges of 137Cs, 210Pb, 226Ra, 228Ra, and 40K were 97% and 0.62-384 Bq/kg, 73% and 6.4-159 Bq/kg, 52% and 0.7-28.8 Bq/kg, 5% and 0.43-2.18 Bq/kg and 100% and (77.4-264) × 10 Bq/kg, respectively. Conclusion Based on the analysis of the 60 samples, the detection rate of radionuclides is in the order of 40K, 137Cs, 210Pb, 226Ra, and 228Ra. In terms of the specific activity, the distribution of 40K and 226Ra in wild edible fungi in the same region is basically uniform, while the content of 210Pb and 137Cs fluctuates in different samples. Although 137Cs and 210Pb can be detected in most of the wild edible fungi, the annual committed effective dose due to ingestion of wild edible fungi is negligible.
2.Research progress on nano-antimicrobial materials in root canal therapy
WANG Yiyi ; QIN Lu ; JIA Yanmin ; DU Xushuo ; LIU Fei ; WANG Suping
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):699-708
The efficacy of root canal therapy, as a core intervention for endodontic and periapical diseases, is highly dependent on the effectiveness of antimicrobial drugs. Although traditional drugs such as calcium hydroxide, chlorhexidine, and antibiotic pastes commonly used in the clinic play a role in preventing and controlling infections, they have obvious limitations. These drugs influence the mechanical properties of dentin, insufficiently solubilize necrotic tissues, and are susceptible to bacterial resistance, which makes achieving the desired effectiveness and safety difficult. Traditional macromolecular root canal drugs also face the challenge of the complexity of the root canal system. With the rapid development of material science in recent years, new antimicrobial agents have emerged. Metallic nanomaterials such as silver nanoparticles and zinc oxide nanoparticles are widely used in the medical field due to their unique physicochemical properties and superior antimicrobial properties. Chitosan nanoparticles have superior biosafety, calcium hydroxide nanoparticles compensate for the limitations of traditional calcium hydroxide formulations, and quaternary ammonium polyethyleneimine nanoparticles can confer antimicrobial properties to existing oral materials. Novel antimicrobial nanoparticles using nano-delivery systems, such as mesoporous calcium silicate and mesoporous silica, carry antimicrobial molecules with significant advantages in terms of anti-biofilm, biosafety, and promotion of tissue repair. Further, these agents reduce drug resistance, which improves prospects for application compared to traditional root canal disinfection drugs. The breakthrough of nanotechnology provides a novel direction for the innovation of root canal treatment drugs. Therefore, this paper reviews the research progress of nano-antimicrobial materials in root canal therapy.
3.Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility.
Kai MENG ; Qian LIU ; Yiding QIN ; Wenjie QIN ; Ziming ZHU ; Longlong SUN ; Mingchao JIANG ; Joseph ADU-AMANKWAAH ; Fei GAO ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(4):379-388
Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Male
;
Humans
;
Infertility, Male/metabolism*
;
Oxidative Phosphorylation
;
Mitochondria/metabolism*
;
Spermatogenesis/physiology*
;
Sertoli Cells/metabolism*
;
Oxidative Stress/physiology*
;
Animals
;
Reactive Oxygen Species/metabolism*
4.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
5.Vonoprazan-based quadruple therapy is non-inferior to esomeprazole-based quadruple therapy for Helicobacter pylori eradication: A multicenter, double-blind, randomized, phase 3 study.
Zhiqiang SONG ; Qin DU ; Guoxin ZHANG ; Zhenyu ZHANG ; Fei LIU ; Nonghua LU ; Liqun GU ; Shingo KURODA ; Liya ZHOU
Chinese Medical Journal 2025;138(22):2938-2946
BACKGROUND:
Owing to the high prevalence of antibiotic resistance in Helicobacter pylori ( H. pylori ) in China, bismuth-containing quadruple therapies have been recommended for H. pylori eradication. This study compared the efficacy and safety of quadruple regimens containing vonoprazan vs . esomeprazole for H. pylori eradication in a patient population in China.
METHODS:
This was a phase 3, multicenter, randomized, double-blind study. Patients with confirmed H. pylori infection were randomized 1:1 to receive quadruple therapy for 14 days: amoxicillin 1000 mg and clarithromycin 500 mg after meals, bismuth potassium citrate 600 mg before meals, plus either vonoprazan 20 mg or esomeprazole 20 mg before meals, all twice daily. The primary outcome was the eradication rate of H. pylori , evaluated using a 13 C urea breath test at 4 weeks after treatment. The non-inferiority margin was at 10%.
RESULTS:
The study included 510 patients, 506 of whom completed the follow-up assessment. The primary analysis revealed eradication rates of 86.8% (210/242) and 86.7% (208/240) for vonoprazan and esomeprazole therapy, respectively (treatment difference: 0.1%; 95% confidence interval [CI]: -5.95, 6.17; non-inferiority P = 0.0009). Per-protocol analysis showed eradication rates of 87.4% for vonoprazan and 86.3% for esomeprazole (treatment difference: 1.2%; 95% CI: -5.03, 7.36; non-inferiority P = 0.0004). Vonoprazan and esomeprazole were well tolerated, with similar safety profiles.
CONCLUSION:
Vonoprazan was found to be well-tolerated and non-inferior to esomeprazole for eradicating H. pylori in patients from China.
TRIAL REGISTRATION
ClinicalTrials.gov , NCT04198363.
Humans
;
Esomeprazole/therapeutic use*
;
Double-Blind Method
;
Helicobacter Infections/drug therapy*
;
Male
;
Female
;
Middle Aged
;
Helicobacter pylori/pathogenicity*
;
Pyrroles/therapeutic use*
;
Sulfonamides/therapeutic use*
;
Adult
;
Clarithromycin/therapeutic use*
;
Amoxicillin/therapeutic use*
;
Aged
;
Anti-Bacterial Agents/therapeutic use*
;
Pyrrolidines/therapeutic use*
;
Drug Therapy, Combination
;
Proton Pump Inhibitors/therapeutic use*
6.Burden and risk factors of stroke worldwide and in China: An analysis from the Global Burden of Disease Study 2021.
Zhengbao ZHU ; Mengyao SHI ; Quan YU ; Jiawen FEI ; Beiping SONG ; Xiaoli QIN ; Lulu SUN ; Yonghong ZHANG
Chinese Medical Journal 2025;138(20):2588-2595
BACKGROUND:
Stroke is the leading cause of death and long-term disability worldwide, including China. This study aimed to provide timely updates on stroke burden and stroke-related risk factors to help improve population-based prevention and control strategies.
METHODS:
Based on the Global Burden of Disease study 2021, incidence rate, prevalence rate, mortality rate, and disability-adjusted life-year (DALY) rate were used to estimate stroke burden trend from 1990 to 2021.
RESULTS:
In 2021, China had 4.1 million incident stroke cases, 26.3 million prevalent stroke cases, 2.6 million stroke related deaths, and 53.2 million stroke related DALYs, compared to 11.9 million incident stroke cases, 93.8 million prevalent stroke cases, 7.3 million stroke related deaths, and 160.5 million stroke-related DALYs worldwide. In 2021, the top six risk factors contributing to stroke burden were high blood pressure, air pollution, tobacco consumption, dietary risk factors, high low-density lipoprotein cholesterol, and high fasting plasma glucose, both in China and worldwide. From 1990 to 2021, China had significant increases of incidence rate, prevalence rate, mortality rate, and DALY rate for stroke, with estimates of 100.6 (95% uncertainty intervals [UI]: 87.2, 114.1)%, 102.9 (95% UI: 95.5, 110.9)%, 40.0 (95% UI: 14.9, 72.3)% and 15.7 (95% UI: -4.6, 41.2)%, respectively, while global incidence rate, prevalence rate, mortality rate and DALY rate for total stroke showed relatively moderate increases or even decreases, with estimates of 15.0 (95% UI: 12.1,18.0)%, 25.8 (95% UI: 23.7, 28.0)%, -2.6 (95% UI: -10.6, 5.5)%, and -10.7 (95% UI: -17.7, -3.6)%, respectively.
CONCLUSION
Stroke remains a huge disease burden worldwide and in China, and compared to the worldwide China has a significantly higher burden of stroke.
Humans
;
Stroke/etiology*
;
China/epidemiology*
;
Risk Factors
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Prevalence
;
Incidence
;
Female
;
Quality-Adjusted Life Years
;
Male
7.Research progress of the dopamine system in neurological diseases.
Yu-Qi NIU ; Jin-Jin WANG ; Wen-Fei CUI ; Peng QIN ; Jian-Feng GAO
Acta Physiologica Sinica 2025;77(2):309-317
The etiology of nervous system diseases is complicated, posing significant harm to patients and often resulting in poor prognoses. In recent years, the role of dopaminergic system in nervous system diseases has attracted much attention, and its complex regulatory mechanism and therapeutic potential have been gradually revealed. This paper reviews the role of dopaminergic neurons, the neurotransmitter dopamine, dopamine receptors and dopamine transporters in neurological diseases (including Alzheimer's disease, Parkinson's disease and schizophrenia), with a view to further elucidating the disease mechanism and providing new insights and strategies for the treatment of neurological diseases.
Humans
;
Dopamine/metabolism*
;
Nervous System Diseases/physiopathology*
;
Parkinson Disease/physiopathology*
;
Receptors, Dopamine/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Alzheimer Disease/physiopathology*
;
Schizophrenia/physiopathology*
;
Animals
8.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
9.A new tetralone glycoside in leaves of Cyclocarya paliurus.
Ting-Si GUO ; Qin HUANG ; Qi-Qi HU ; Fei-Bing HUANG ; Qing-Ling XIE ; Han-Wen YUAN ; Wei WANG ; Yu-Qing JIAN
China Journal of Chinese Materia Medica 2025;50(1):146-167
The chemical constituents from leaves of Cyclocarya paliurus were isolated and purified by chromatography on silica gel, C_(18) reverse-phase silica gel, and Sephadex LH-20 gel, as well as semi-preparative high-performance liquid chromatography. Six compounds were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data as cyclopaloside D(1), boscialin(2),(5R,6S)-6-hydroxy-6-[(E)-3-hydroxybut-1-enyl]-1,1,5-trimethylcyclohexanone(3), 3S,5R-dihydroxy-6R,7-megastigmadien-9-one(4), 3S,5R-dihydroxy-6S,7-megastigmadien-9-one(5), and gingerglycolipid A(6), respectively. Among them, compound 1 was identified as a new tetralone glycoside, and compounds 2-6 were isolated from leaves of C. paliurus for the first time. Furthermore, compound 1 exhibited strong antioxidant activity, with the IC_(50) of(454.20±31.81)μmol·L~(-1) and(881.82±42.31)μmol·L~(-1) in scavenging DPPH and ABTS free radicals, respectively.
Plant Leaves/chemistry*
;
Glycosides/isolation & purification*
;
Juglandaceae/chemistry*
;
Tetralones/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
10.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female


Result Analysis
Print
Save
E-mail