1.Study on secondary metabolites of Penicillium expansum GY618 and their tyrosinase inhibitory activities
Fei-yu YIN ; Sheng LIANG ; Qian-heng ZHU ; Feng-hua YUAN ; Hao HUANG ; Hui-ling WEN
Acta Pharmaceutica Sinica 2025;60(2):427-433
Twelve compounds were isolated from the rice fermentation extracts of
2.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
3.Effect of dapagliflozin in paroxysmal atrial fibrillation combined with heart failure with preserved ejection fraction: a randomized controlled trial
Xiaoyu LIAN ; Fei PENG ; Hui GONG ; Juying QIAN
Chinese Journal of Clinical Medicine 2025;32(3):342-349
Objective To explore the efficacy and safety of dapagliflozin in patients with paroxysmal atrial fibrillation (PAF) combined with heart failure with preserved ejection fraction (HFpEF). Methods A total of 120 patients with PAF combined with HFpEF treated at Jinshan Hospital of Fudan University from July 2022 to July 2023 were selected and randomly divided into the dapagliflozin group (n=60, standard treatment combined with dapagliflozin) and the control group (n=60, standard treatment combined with placebo). After 12 months of follow-up, the Kansas City Cardiomyopathy Questionnaire-Total Symptom Score (KCCQ-TSS), PAF duration, recurrence rate and frequency of PAF, left atrial diameter, left ventricular end-systolic diameter, left ventricular end-diastolic diameter, left ventricular ejection fraction, P-wave dispersion, blood pressure, plasma N-terminal pro-brain natriuretic peptide (NT-proBNP), estimated glomerular filtration rate (eGFR), and glycated hemoglobin A1C (HbA1C) were compared between the two groups. Cardiovascular outcomes and adverse events were observed. Results A total of 10 patients lost to follow-up, and 110 patients were included in the analysis (55 in each group). After 12 months of treatment, the KCCQ-TSS in the dapagliflozin group was significantly higher than that in the control group ([61.68±2.65] points vs [44.98±4.76] points, P<0.001). The PAF duration in the dapagliflozin group was significantly shorter than that in the control group ([144±18] min vs [270±24] min, P=0.045). After treatment, frequency of PAF, NT-proBNP levels, left ventricular end-systolic diameter, left ventricular end-diastolic diameter, left atrial diameter, P-wave dispersion, and HbA1C levels showed statistical differences between the two groups (P<0.05). The heart failure readmission rate and PAF recurrence rate in the dapagliflozin group were significantly lower than those in the control group (P<0.05). There was no significant difference in the incidence of adverse events between the two groups during treatment. Conclusions Dapagliflozin improves patients’ quality of life, reduces PAF duration and recurrence rate, decreases heart failure readmission rate, lowers NT-proBNP levels, reverses cardiac remodeling, and demonstrates favorable safety in patients with PAF combined with HFpEF.
4.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
5.Association between incidence of hand-foot-mouth disease and meteorological factors
YANG Ya ; FEI Jie ; YANG Yiwei ; ZHANG Bing ; ZHANG Qian ; LU Yihan
Journal of Preventive Medicine 2025;37(4):346-349,355
Objective:
To examine the association between incidence of hand-foot-mouth disease (HFMD) and meteorological factors, so as to provide the basis for the prevention and control of HFMD.
Methods:
The number of HFMD cases in Jiading District, Shanghai Municipality from 2016 to 2023 were collected through the Chinese Disease Prevention and Control Information System, and meteorological data were obtained from the Shanghai Meteorological Bureau. The associations of daily average temperature, daily average relative humidity, and daily average atmospheric pressure with the daily number of HFMD cases were analyzed using a distributed lag non-linear model (DLNM).
Results:
A total of 21 555 HFMD cases were reported in Jiading District from 2016 to 2023, with an average annual incidence of 132.57/100 000. There were 12 762 male cases (59.21%) and 8 793 female cases (40.79%). The main peak of incidence occurred from June to August, and the secondary peak was from October to December. DLNM analysis showed that the incidence risk of HFMD first increased and then decreased with the increase of daily average temperature, and first decreased and then increased with the prolongation of the lag time. The cumulative lag risk was higher when the daily average temperature ranged from 18.4 to 35.1 ℃, and the maximum cumulative lag effect was observed at 27.8 ℃ (RR=5.522, 95%CI: 4.751-6.370). The incidence risk of HFMD first increased and then decreased with the increase of daily average relative humidity, and first decreased, then increased and then decreased again with the prolongation of the lag time. The cumulative lag risk was higher when the daily average relative humidity ranged from 71.7% and 90.8%, and the maximum cumulative lag effect was observed at 81.8% (RR=1.603, 95%CI: 1.321-1.995). The incidence risk of HFMD decreased with the increase of daily average atmospheric pressure, and decreased with the prolongation of the lag time when the daily average atmospheric pressure was greater than 1 015.80 hPa. When the daily average atmospheric pressure was less than 1 015.80 hPa, the incidence risk of HFMD increased with the prolongation of the lag time. The maximum cumulative lag effect was observed at 986.80 hPa (RR=8.513, 95%CI: 1.401-36.625).
Conclusion
The incidence risk of HFMD in Jiading District initially increases and then decreases with increasing temperature and relative humidity, while it decreases with increasing atmospheric pressure, and these effects exhibit a lagged response.
6.Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility.
Kai MENG ; Qian LIU ; Yiding QIN ; Wenjie QIN ; Ziming ZHU ; Longlong SUN ; Mingchao JIANG ; Joseph ADU-AMANKWAAH ; Fei GAO ; Rubin TAN ; Jinxiang YUAN
Chinese Medical Journal 2025;138(4):379-388
Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Male
;
Humans
;
Infertility, Male/metabolism*
;
Oxidative Phosphorylation
;
Mitochondria/metabolism*
;
Spermatogenesis/physiology*
;
Sertoli Cells/metabolism*
;
Oxidative Stress/physiology*
;
Animals
;
Reactive Oxygen Species/metabolism*
7.Efficacy and safety of high protein intake in critically ill patients.
Wei WU ; Fei LENG ; Minhui DONG ; Jieqiong SONG ; Jincheng ZHANG ; Fei HAN ; Yiqi QIAN ; Ming ZHONG
Chinese Medical Journal 2025;138(7):880-882
8.The role of selenoproteins in adipose tissue and obesity.
Yun-Fei ZHAO ; Yu-Hang SUN ; Tai-Hua JIN ; Yue LIU ; Yang-Di CHEN ; Wan XU ; Qian GAO
Acta Physiologica Sinica 2025;77(5):939-955
Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.
Selenoproteins/metabolism*
;
Adipose Tissue/physiology*
;
Obesity/metabolism*
;
Humans
;
Animals
;
Selenium
9.Research progress in pharmacological effects of puerarin.
Xiao-Wei MENG ; Feng-Mei GUO ; Qian-Qian WANG ; Jia-Rong LI ; Ni ZHANG ; Fei QU ; Rong-Hua LIU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2025;50(11):2954-2968
Traditional Chinese medicine(TCM), a treasure of the Chinese nation, contains abundant chemical components and demonstrates unique pharmacological activities, showing important values in clinical applications. With profound connotations and broad application prospects, TCM urgently needs us to further explore and conduct systematic research. Puerarin is a small-molecule natural isoflavonoid carbon glycoside extracted from plants of Pueraria. It is also the main active ingredient of Puerariae Lobata Radix, a Chinese herbal medicine with both medicinal and edible values. Puerarin has a variety of pharmacological effects such as blood pressure-lowering, anti-atherosclerosis, anti-ischemia-reperfusion injury, antithrombotic, anti-tumor, anti-inflammatory, liver-protecting, nerve cell-protecting, and intestinal microbiota-regulating effects. It is also an active ingredient that has been widely studied. This article comprehensively reviews the research progress in the pharmacological effects and molecular mechanisms of puerarin over the years, aiming to provide references and theoretical support for the in-depth research and development as well as clinical application of puerarin.
Isoflavones/chemistry*
;
Humans
;
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Pueraria/chemistry*
10.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans


Result Analysis
Print
Save
E-mail