1.Time-Dependent Transcriptional Dynamics of Contextual Fear Memory Retrieval Reveals the Function of Dipeptidyl Peptidase 9 in Reconsolidation.
Wen-Ting GUO ; Wen-Xing LI ; Yu-Chen LIU ; Ya-Bo ZHAO ; Lin XU ; Qi-Xin ZHOU
Neuroscience Bulletin 2025;41(1):16-32
Numerous studies on the formation and consolidation of memory have shown that memory processes are characterized by phase-dependent and dynamic regulation. Memory retrieval, as the only representation of memory content and an active form of memory processing that induces memory reconsolidation, has attracted increasing attention in recent years. Although the molecular mechanisms specific to memory retrieval-induced reconsolidation have been gradually revealed, an understanding of the time-dependent regulatory mechanisms of this process is still lacking. In this study, we applied a transcriptome analysis of memory retrieval at different time points in the recent memory stage. Differential expression analysis and Short Time-series Expression Miner (STEM) depicting temporal gene expression patterns indicated that most differential gene expression occurred at 48 h, and the STEM cluster showing the greatest transcriptional upregulation at 48 h demonstrated the most significant difference. We then screened the differentially-expressed genes associated with that met the expression patterns of those cluster-identified genes that have been reported to be involved in learning and memory processes in addition to dipeptidyl peptidase 9 (DPP9). Further quantitative polymerase chain reaction verification and pharmacological intervention suggested that DPP9 is involved in 48-h fear memory retrieval and viral vector-mediated overexpression of DPP9 countered the 48-h retrieval-induced attenuation of fear memory. Taken together, our findings suggest that temporal gene expression patterns are induced by recent memory retrieval and provide hitherto undocumented evidence of the role of DPP9 in the retrieval-induced reconsolidation of fear memory.
Animals
;
Fear/physiology*
;
Male
;
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics*
;
Memory Consolidation/physiology*
;
Time Factors
;
Mental Recall/drug effects*
;
Mice
;
Gene Expression Profiling
2.How Fear Memory is Updated: From Reconsolidation to Extinction?
Jiahui CHEN ; Zhuowen FANG ; Xiaolan ZHANG ; Yanrong ZHENG ; Zhong CHEN
Neuroscience Bulletin 2025;41(6):1054-1084
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Fear/psychology*
;
Extinction, Psychological/physiology*
;
Animals
;
Stress Disorders, Post-Traumatic/psychology*
;
Humans
;
Memory Consolidation/physiology*
;
Memory/physiology*
3.Suprachiasmatic Nucleus Vasoactive Intestinal Peptide Neurons Mediate Light-induced Transient Forgetting.
Xiaoya SU ; Yikai TANG ; Yi ZHONG ; Yunlong LIU
Neuroscience Bulletin 2025;41(11):2025-2035
Our research reveals the critical role of the suprachiasmatic nucleus (SCN) vasoactive intestinal peptide (VIP) neurons in mediating light-induced transient forgetting. Acute exposure to bright light selectively impairs trace fear memory by activating VIP neurons in the SCN, as demonstrated by increased c-Fos expression and Ca2+ recording. This effect can be replicated and reversed through optogenetic and chemogenetic manipulations of SCN VIP neurons. Furthermore, we identify the SCN → PVT (paraventricular nucleus of the thalamus) VIP neuronal circuitry as essential in this process. These findings establish a novel role for SCN VIP neurons in modulating memory accessibility in response to environmental light cues, extending their known function beyond circadian regulation and revealing a mechanism for transient forgetting.
Animals
;
Vasoactive Intestinal Peptide/metabolism*
;
Male
;
Mice
;
Neurons/metabolism*
;
Suprachiasmatic Nucleus/physiology*
;
Light
;
Mice, Inbred C57BL
;
Memory/physiology*
;
Fear/physiology*
;
Suprachiasmatic Nucleus Neurons/metabolism*
;
Optogenetics
;
Proto-Oncogene Proteins c-fos/metabolism*
4.Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex.
Yu-Die YANG ; Wen ZHONG ; Ming CHEN ; Qing-Chen TANG ; Yan LI ; Lu-Lu YAO ; Mei-Qi ZHOU ; Neng-Gui XU ; Shuai CUI
Journal of Integrative Medicine 2025;23(5):537-547
OBJECTIVE:
To elucidate the specific mechanisms by which electroacupuncture (EA) alleviates anxiety and fear behaviors associated with posttraumatic stress disorder (PTSD), focusing on the role of lipocalin-2 (Lcn2).
METHODS:
The PTSD mouse model was subjected to single prolonged stress and shock (SPS&S), and the animals received 15 min sessions of EA at Shenmen acupoint (HT7). Behavioral tests were used to investigate the effects of EA at HT7 on anxiety and fear. Western blotting and enzyme-linked immunosorbent assay were used to quantify Lcn2 and inflammatory cytokine levels in the prefrontal cortex (PFC). Additionally, the activity of PFC neurons was evaluated by immunofluorescence and in vivo electrophysiology.
RESULTS:
Mice subjected to SPS&S presented increased anxiety- and fear-like behaviors. Lcn2 expression in the PFC was significantly upregulated following SPS&S, leading to increased expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6 and suppression of PFC neuronal activity. However, EA at HT7 inhibited Lcn2 release, reducing neuroinflammation and hypoexcitability in the PFC. Lcn2 overexpression mitigated the effects of EA at HT7, resulting in anxiety- and fear-like behaviors.
CONCLUSION
EA at HT7 can ameliorate PTSD-associated anxiety and fear, and its mechanism of action appears to involve the inhibition of Lcn2-mediated neural activity and inflammation in the PFC. Please cite this article as: Yang YD, Zhong W, Chen M, Tang QC, Li Y, Yao LL, et al. Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex. J Integr Med. 2025; 23(5):537-547.
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Animals
;
Lipocalin-2/metabolism*
;
Prefrontal Cortex/physiopathology*
;
Male
;
Mice
;
Neurons/physiology*
;
Disease Models, Animal
;
Fear
;
Behavior, Animal
;
Mice, Inbred C57BL
;
Neuroinflammatory Diseases/metabolism*
;
Anxiety/therapy*
;
Acupuncture Points
5.Advances in neural circuits of innate fear defense behavior.
Jiajia ZHAO ; Qi SONG ; Yongye WU ; Liping YANG
Journal of Zhejiang University. Medical sciences 2023;52(5):653-661
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Animals
;
Humans
;
Fear/physiology*
;
Nerve Net
6.Contextual Fear Learning and Extinction in the Primary Visual Cortex of Mice.
Xiaoke XIE ; Shangyue GONG ; Ning SUN ; Jiazhu ZHU ; Xiaobin XU ; Yongxian XU ; Xiaojing LI ; Zhenhong DU ; Xuanting LIU ; Jianmin ZHANG ; Wei GONG ; Ke SI
Neuroscience Bulletin 2023;39(1):29-40
Fear memory contextualization is critical for selecting adaptive behavior to survive. Contextual fear conditioning (CFC) is a classical model for elucidating related underlying neuronal circuits. The primary visual cortex (V1) is the primary cortical region for contextual visual inputs, but its role in CFC is poorly understood. Here, our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval, and both CFC learning and extinction increased the turnover rate of axonal boutons in V1. The frequency of neuronal Ca2+ activity decreased after CFC learning, while CFC extinction reversed the decrease and raised it to the naïve level. Contrary to control mice, the frequency of neuronal Ca2+ activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction, indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca2+ activity. These findings reveal a critical role of microglia in neocortical information processing in V1, and suggest potential approaches for cellular-based manipulation of acquired fear memory.
Mice
;
Animals
;
Primary Visual Cortex
;
Extinction, Psychological/physiology*
;
Learning/physiology*
;
Fear/physiology*
;
Hippocampus/physiology*
7.Somatostatin-Positive Neurons in the Rostral Zona Incerta Modulate Innate Fear-Induced Defensive Response in Mice.
Shan LIN ; Meng-Yue ZHU ; Meng-Yu TANG ; Mi WANG ; Xiao-Dan YU ; Yi ZHU ; Shi-Ze XIE ; Dan YANG ; Jiadong CHEN ; Xiao-Ming LI
Neuroscience Bulletin 2023;39(2):245-260
Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.
Mice
;
Animals
;
Zona Incerta/metabolism*
;
Neurons/metabolism*
;
Fear/physiology*
;
Somatostatin/metabolism*
8.Formation of the Looming-evoked Innate Defensive Response during Postnatal Development in Mice.
Shanping CHEN ; Huiying TAN ; Zhijie WANG ; Yu-Ting TSENG ; Xiaotao LI ; Liping WANG
Neuroscience Bulletin 2022;38(7):741-752
Environmental threats often trigger innate defensive responses in mammals. However, the gradual development of functional properties of these responses during the postnatal development stage remains unclear. Here, we report that looming stimulation in mice evoked flight behavior commencing at P14-16 and had fully developed by P20-24. The visual-evoked innate defensive response was not significantly altered by sensory deprivation at an early postnatal stage. Furthermore, the percentages of wide-field and horizontal cells in the superior colliculus were notably elevated at P20-24. Our findings define a developmental time window for the formation of the visual innate defense response during the early postnatal period and provide important insight into the underlying mechanism.
Animals
;
Evoked Potentials, Visual
;
Fear/physiology*
;
Mammals
;
Mice
;
Mice, Inbred C57BL
;
Neurons/physiology*
;
Superior Colliculi/physiology*
9.A Critical Time-Window for the Selective Induction of Hippocampal Memory Consolidation by a Brief Episode of Slow-Wave Sleep.
Yi LU ; Zheng-Gang ZHU ; Qing-Qing MA ; Yun-Ting SU ; Yong HAN ; Xiaodong WANG ; Shumin DUAN ; Yan-Qin YU
Neuroscience Bulletin 2018;34(6):1091-1099
Although extensively studied, the exact role of sleep in learning and memory is still not very clear. Sleep deprivation has been most frequently used to explore the effects of sleep on learning and memory, but the results from such studies are inevitably complicated by concurrent stress and distress. Furthermore, it is not clear whether there is a strict time-window between sleep and memory consolidation. In the present study we were able to induce time-locked slow-wave sleep (SWS) in mice by optogenetically stimulating GABAergic neurons in the parafacial zone (PZ), providing a direct approach to analyze the influences of SWS on learning and memory with precise time-windows. We found that SWS induced by light for 30 min immediately or 15 min after the training phase of the object-in-place task significantly prolonged the memory from 30 min to 6 h. However, induction of SWS 30 min after the training phase did not improve memory, suggesting a critical time-window between the induction of a brief episode of SWS and learning for memory consolidation. Application of a gentle touch to the mice during light stimulation to prevent SWS induction also failed to improve memory, indicating the specific role of SWS, but not the activation of PZ GABAergic neurons itself, in memory consolidation. Similar influences of light-induced SWS on memory consolidation also occurred for Y-maze spatial memory and contextual fear memory, but not for cued fear memory. SWS induction immediately before the test phase had no effect on memory performance, indicating that SWS does not affect memory retrieval. Thus, by induction of a brief-episode SWS we have revealed a critical time window for the consolidation of hippocampus-dependent memory.
Animals
;
Cues
;
Electroencephalography
;
Electromyography
;
Evoked Potentials, Motor
;
physiology
;
Fear
;
psychology
;
Glutamate Decarboxylase
;
metabolism
;
Hippocampus
;
physiology
;
Light
;
Luminescent Proteins
;
genetics
;
metabolism
;
Maze Learning
;
physiology
;
Memory Consolidation
;
physiology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Sleep Deprivation
;
Sleep, Slow-Wave
;
physiology
;
Time Factors
;
Vesicular Inhibitory Amino Acid Transport Proteins
;
genetics
;
metabolism
10.Optogenetic activation of dorsal hippocampal astrocytic Rac1 blocks the learning of associative memory.
Xiao-Mu GUO ; Zhao-Hui LIAO ; Ye-Zheng TAO ; Fei-Fei WANG ; Lan MA
Acta Physiologica Sinica 2017;69(3):241-251
Rac1 belongs to the family of Rho GTPases, and plays important roles in the brain function. It affects the cell migration and axon guidance via regulating the cytoskeleton and cellular morphology. However, the effect of its dynamic activation in regulating physiological function remains unclear. Recently, a photoactivatable analogue of Rac1 (PA-Rac1) has been developed, allowing the activation of Rac1 by the specific wavelength of light in living cells. Thus, we constructed recombinant adeno-associated virus (AAV) of PA-Rac1 and its light-insensitive mutant PA-Rac1-C450A under the control of the mouse glial fibrillary acidic protein (mGFAP) promoter to manipulate Rac1 activity in astrocytes by optical stimulation. Primary culture of hippocampal astrocytes was infected with the recombinant AAV-PA-Rac1 or AAV-PA-Rac1-C450A. Real-time fluorescence imaging showed that the cell membrane of the astrocyte expressing PA-Rac1 protruded near the light spot, while the astrocyte expressing PA-Rac1-C450A did not. We injected AAV-PA-Rac1 and AAV-PA-Rac1-C450A into dorsal hippocampus to investigate the role of the activation of Rac1 in regulating the associative learning. With optical stimulation, the PA-Rac1 group, rather than the PA-Rac1-C450A group, showed slower learning curve during the fear conditioning compared with the control group, indicating that activating astrocytic Rac1 blocks the formation of contextual memory. Our data suggest that the activation of Rac1 in dorsal hippocampal astrocyte plays an important role in the associative learning.
Animals
;
Astrocytes
;
physiology
;
Cell Membrane
;
Cell Movement
;
Conditioning, Classical
;
Cytoskeleton
;
Dependovirus
;
Fear
;
Hippocampus
;
physiology
;
Memory
;
Mice
;
Mice, Inbred C57BL
;
Neuropeptides
;
genetics
;
physiology
;
Optogenetics
;
rac1 GTP-Binding Protein
;
genetics
;
physiology

Result Analysis
Print
Save
E-mail